Skip header and navigation

25 records – page 1 of 3.

An Evaluation of Strength Performance of the Edge Connections between Cross-laminated Timber Panels Reinforced with Glass Fiber-reinforced Plastic

https://research.thinkwood.com/en/permalink/catalogue2424
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Bending, Shear, and Compressive Properties of Three- and Five-Layer Cross-Laminated Timber Fabricated with Black Spruce

https://research.thinkwood.com/en/permalink/catalogue2589
Year of Publication
2020
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
He, Minjuan
Sun, Xiaofeng
Li, Zheng
Feng, Wei
Publisher
SpringerOpen
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Black Spruce
Panels
Bending
Thickness
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
Cross-laminated timber (CLT) is an innovative engineering wood product made by gluing layers of solid-sawn lumber at perpendicular angles. The commonly used wood species for CLT manufacturing include spruce-pine-fir (SPF), douglas fir-larch, and southern pine lumber. With the hope of broadening the wood species for CLT manufacturing, the purposes of this study include evaluating the mechanical properties of black spruce CLT and analyzing the influence of CLT thickness on its bending or shear properties. In this paper, bending, shear, and compressive tests were conducted respectively on 3-layer CLT panels with a thickness of 105 mm and on 5-layer CLT panels with a thickness of 155 mm, both of which were fabricated with No. 2-grade Canadian black spruce. Their bending or shear resisting properties as well as the failure modes were analyzed. Furthermore, comparison of mechanical properties was conducted between the black spruce CLT panels and the CLT panels fabricated with some other common wood species. Finally, for both the CLT bending panels and the CLT shear panels, their numerical models were developed and calibrated with the experimental results. For the CLT bending panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios can even slightly reduce the characteristic bending strength of the black spruce CLT. For the CLT shear panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios has little enhancement on their characteristic shear strength. For the CLT bending panels, their effective bending stiffness based on the Shear Analogy theory can be used as a more accurate prediction on their experiment-based global bending stiffness. The model of the CLT bending specimens is capable of predicting their bending properties; whereas, the model of the CLT shear specimens would underestimate their ultimate shear resisting capacity due to the absence of the rolling shear mechanism in the model, although the elastic stiffness can be predicted accurately. Overall, it is attested that the black spruce CLT can provide ideal bending or shear properties, which can be comparable to those of the CLT fabricated with other commonly used wood species. Besides, further efforts should focus on developing a numerical model that can consider the influence of the rolling shear mechanism.
Online Access
Free
Resource Link
Less detail

Bonding Strength Test Method Assessment for Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP)

https://research.thinkwood.com/en/permalink/catalogue1404
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

Comparison of Bending Stiffness of Cross-Laminated Solid Timber Derived by Modal Analysis of Full Panels and by Bending Tests of Strip-Shaped Specimens

https://research.thinkwood.com/en/permalink/catalogue445
Year of Publication
2012
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Steiger, René
Gülzow, Arne
Czaderski, Christoph
Howald, Martin
Niemz, Peter
Publisher
Springer-Verlag
Year of Publication
2012
Country of Publication
Germany
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Elastic Properties
Stiffness Properties
Bending Test
Bending Stiffness
Panels
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Online Access
Free
Resource Link
Less detail

Computational Modelling of Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2421
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

Design Methodology Analysis of Cross-Laminated Timber Elements Subjected to Flexure

https://research.thinkwood.com/en/permalink/catalogue7
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Mierinš, Imants
Publisher
Kaunas University of Technology
Year of Publication
2014
Country of Publication
Lithuania
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Topic
Mechanical Properties
Keywords
Design
Flexural
FEM method
Testing
Panels
Language
English
Research Status
Complete
Series
Journal of Sustainable Architecture and Civil Engineering
ISSN
2335–2000
Online Access
Free
Resource Link
Less detail

Development of CLT Panels Bond-in Method for Seismic Retrofitting of RC Frame Structure

https://research.thinkwood.com/en/permalink/catalogue1860
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Author
Haba, Ryota
Kitamori, Akihisa
Mori, Takuro
Fukuhara, Takeshi
Kurihara, Takaaki
Isoda, Hiroshi
Publisher
J-STAGE
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Frames
Topic
Seismic
Design and Systems
Keywords
Retrofit
Earthquake
Panels
Adhesive
Bonding
Language
Japanese
Research Status
Complete
Series
Journal of Structural and Construction Engineering: Transactions of AIJ
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Elastic Response of Cross Laminated Engineered Bamboo Panels Subjected to In-Plane Loading

https://research.thinkwood.com/en/permalink/catalogue1805
Year of Publication
2017
Topic
Mechanical Properties
Material
Other Materials
Author
Archila-Santos, Hector
Walker, Pete
Ansell, Martin
Rhead, Andrew
Lizarazo-Marriaga, Juan
Publisher
ICE Publishing
Year of Publication
2017
Country of Publication
United Kingdom
Format
Journal Article
Material
Other Materials
Topic
Mechanical Properties
Keywords
Compression
Deformation
Elastic Moduli
Bamboo
Panels
G-XLam
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-650X
Online Access
Free
Resource Link
Less detail

Elastic Response of Cross-Laminated Engineered Bamboo Panels Subjected to In-Plane Loading

https://research.thinkwood.com/en/permalink/catalogue2305
Year of Publication
2019
Topic
Design and Systems
Material
Other Materials
Application
Walls
Wood Building Systems
Author
Archila-Santos, Hector
Rhead, Andrew
Publisher
ICE Publishing
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
Other Materials
Application
Walls
Wood Building Systems
Topic
Design and Systems
Keywords
G-XLam
Panels
Strength
Stiffness
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-650X
Online Access
Free
Resource Link
Less detail

25 records – page 1 of 3.