Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Summary
Cross Laminated Timber (CLT) panels are more and more common in timber construction. When submitted to out-of-plane loads, they can be considered as multi-layer plates with anisotropic behaviour. Their main structural issue is the low transverse shear strength of cross layers which leads to rolling shear failure. In addition the fabrication process can include or not lateral boards’ gluing. The resulting discontinuities can be considered as weakly heterogeneous and influence the mechanical response. Moreover the timber construction market requires new technical solutions for CLT, like periodic voids within the panel. This solution leads to lighter and more thermally efficient floors. However, the spaced voids between boards increase the heterogeneity of the panel and therefore the complexity of stresses’ distribution.
Cross-laminated timber, also known as X-Lam or CLT, is well established in
Europe as a construction material. Recently, implementation of X-Lam products and
systems has begun in countries such as Canada, United States, Australia and New
Zealand. So far, no relevant design codes for X-Lam construction were published in
Europe, therefore an extensive research on the field of cross-laminated timber is being
performed by research groups in Europe and overseas. Experimental test results are
required for development of design methods and for verification of design models
accuracy.
This thesis is part of a large research project on the development of a software
for the modelling of CLT structures, including analysis, calculation, design and
verification of connections and panels. It was born as collaboration between Padua
University and Barcelona"s CIMNE (International Centre for Numerical Methods in
Engineering). The research project started with the thesis “Una procedura numerica per
il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software,
using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started
in March 2015, consisting in extending the 2D software to a 3D one, with the severity
caused by modelling in three dimensions. This phase is developed as a common project
and described in this thesis and in “Pre-process for numerical analysis of Cross
Laminated Timber Structures” by Alessandra Ferrandino.
The final aim of the software is to enable the modelling of an X-Lam structure in
the most efficient and reliable way, taking into account its peculiarities. Modelling of
CLT buildings lies into properly model the connections between panels. Through the
connections modelling, the final aim is to enable the check of preliminarily designed
connections or to find them iteratively, starting from hypothetical or random
connections.
This common project develops the pre-process and analysis phases of the 3D
software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for
KRATOS framework have been performed. The problem type enables the user to model
a CLT structure, starting from the creation of the geometry and the assignation of
numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and
assigning loads and boundary conditions. The user does not need to create manually the
connections, as conversely needs for all commercial FEM software currently available;
he just set the connection properties to the different sides of the panels. The creation of
the connections is made automatically, keeping into account different typologies of
connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of
structures and the software architecture is planned for future developments of the postprocess phase.
It can be concluded that sound bases for the pre-process and analysis phases of
the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
Cross-laminated timber (CLT) is an innovative engineering wood product made by gluing layers of solid-sawn lumber at perpendicular angles. The commonly used wood species for CLT manufacturing include spruce-pine-fir (SPF), douglas fir-larch, and southern pine lumber. With the hope of broadening the wood species for CLT manufacturing, the purposes of this study include evaluating the mechanical properties of black spruce CLT and analyzing the influence of CLT thickness on its bending or shear properties. In this paper, bending, shear, and compressive tests were conducted respectively on 3-layer CLT panels with a thickness of 105 mm and on 5-layer CLT panels with a thickness of 155 mm, both of which were fabricated with No. 2-grade Canadian black spruce. Their bending or shear resisting properties as well as the failure modes were analyzed. Furthermore, comparison of mechanical properties was conducted between the black spruce CLT panels and the CLT panels fabricated with some other common wood species. Finally, for both the CLT bending panels and the CLT shear panels, their numerical models were developed and calibrated with the experimental results. For the CLT bending panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios can even slightly reduce the characteristic bending strength of the black spruce CLT. For the CLT shear panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios has little enhancement on their characteristic shear strength. For the CLT bending panels, their effective bending stiffness based on the Shear Analogy theory can be used as a more accurate prediction on their experiment-based global bending stiffness. The model of the CLT bending specimens is capable of predicting their bending properties; whereas, the model of the CLT shear specimens would underestimate their ultimate shear resisting capacity due to the absence of the rolling shear mechanism in the model, although the elastic stiffness can be predicted accurately. Overall, it is attested that the black spruce CLT can provide ideal bending or shear properties, which can be comparable to those of the CLT fabricated with other commonly used wood species. Besides, further efforts should focus on developing a numerical model that can consider the influence of the rolling shear mechanism.
Results from a series of blast tests performed in October 2016 on three two-story, single-bay cross-laminated timber (CLT) structures demonstrated the ability of CLT construction to resist airblast loads in a predictable fashion. These tests were performed on structures without superimposed load to limit inertial resistance. Subsequently, a follow-on series of tests was performed to investigate the response of axially-loaded CLT construction. Panels damaged during the preceding test were removed and replaced. Axial load was applied using precast concrete blocks to simulate the loaded condition of a five-story building at the first-floor front panel of the structures. These test structures were exposed to two shots: the first was designed to keep the structures within their respective elastic ranges while the second was designed to push the structures beyond their elastic limits. Reflected pressure and peak deflections were recorded at the front panels of the test structures to document the two-way panel load distribution behavior under a dynamic load event and the clearing of the shock wave. Prior to conducting the blast tests, a small number of tests were performed on a load tree test apparatus to aid in test planning by investigating the post-peak response of individual CLT panels of various lengths to quasi-static out-of-plane and axial loads applied simultaneously. This paper provides an overview of the results obtained from both the quasi-static and blast tests of axially-loaded CLT. Additionally, the paper compares CLT structure, component, and connection response across the suite of data. Conclusions are offered to assist engineers in the design of load bearing CLT construction exposed to airblast loads.
Different methods, including bending tests and small and medium size shear tests, were used to assess the skin to stringer glue line shear strength of Radiata Pine Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP). Bending test shear strengths were estimated using the mechanically jointed beam theory (gamma method) for CrossLaminated Timber (CLT) panels with modifications in the layers’ effective widths, and then compared with results from the small and medium size shear tests. Small and medium size shear tests proved to be possible methods for assessing bonding strength for factory production control. The small shear tests provided lower strength values and higher scatter results than those gathered from the medium size tests. The mean shear strength results obtained from bending tests were inferior to the values obtained from the small and medium size specimens. The bending tests proved necessary for assessing the mechanical behaviour of CLT SSP.
A study was conducted with the primary objective of gathering information for the development of a protocol for evaluating the surface quality of cross-laminated timber (CLT) products. The secondary objectives were to examine the effect of moisture content (MC) reduction on the development of surface checks and gaps, and find ways of minimizing the checking problems in CLT panels. The wood materials used for the CLT samples were rough-sawn Select grade Hem-Fir boards 25 x 152 mm (1 x 6 inches). Polyurethane was the adhesive used. The development of checks and gaps were evaluated after drying at two temperature levels at ambient relative humidity (RH).
The checks and gaps, as a result of drying to 6% to 10% MC from an initial MC of 13%, occurred randomly depending upon the characteristics of the wood and the manner in which the outer laminas were laid up in the panel. Suggestions are made for minimizing checking and gap problems in CLT panels. The checks and gaps close when the panels are exposed to higher humidity.
Guidelines were proposed for the development of a protocol for classifying CLT panels into appearance grades in terms of the severity of checks and gaps. The grades can be based on the estimated dimensions of the checks and gaps, their frequency, and the number of laminas in which they appear.
Fire tests on a double egress fire door installed in two Cross Laminated Timber (CLT) wall panels were conducted. The purpose of the testing was to identify design consideration for detailing the interface between a 90 min. listed door assembly and a CLT wall with a 2-hr fire resistance. See also QAI Laboratories test reports: T895-6a Rev.2, and T895-6b Rev. 1
Comparison of Bending Stiffness of Cross-Laminated Solid Timber Derived by Modal Analysis of Full Panels and by Bending Tests of Strip-Shaped Specimens
The design of cross-laminated solid timber (CLT) as load-bearing plates is mainly governed by serviceability criterions like maximal deflection and susceptibility to vibration. Hence, predicting the respective behavior of such plates requires accurate information about their elastic properties. According to product standards, the bending stiffness of CLT has to be assessed from 4-point bending tests of strip-shaped specimens, cut from the CLT panels. By comparing elastic properties of CLT derived by means of modal analysis of full panels with the results of bending tests on 100 mm and 300 mm wide strip-shaped specimens it is shown, that by testing single 100 mm wide strip-shaped specimens bending stiffness of full panels cannot be assessed correctly, whereas single 300 mm wide strips or averages of 5 to 6 100 mm wide strip-shaped specimens lead to acceptable results. Hence, strip-shaped specimens should only be used in the course of factory quality control or when assessing the bending stiffness of parts of CLT panels used as beam-like load-bearing elements but not to derive bending stiffness of gross CLT panels. Verification by carrying out static bending tests of gross CLT panels under different loading situations showed that alternatively to tests on strip-shaped specimens or estimations with the compound theory, the overall stiffness properties of CLT can be derived directly by a modal analysis of full-size panels.