Skip header and navigation

1 records – page 1 of 1.

Finite Element Analysis of Bending Stiffness for Cross-Laminated Timber with Varying Board Width

https://research.thinkwood.com/en/permalink/catalogue2455
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Berg, Sven
Turesson, Jonas
Ekevad, Mats
Huber, Johannes
Organization
Luleå University of Technolog
Publisher
Taylor&Francis Online
Year of Publication
2019
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Finite Element Analysis
Board Width
Out-of-Plane Load
Research Status
Complete
Series
Wood Material Science & Engineering
Summary
Cross laminated timber (CLT) is a wood panelling building system that is used in construction, e.g. for floors, walls and beams. Because of the increased use of CLT, it is important to have accurate simulation models. CLT systems are simulated with one-dimensional and two-dimensional (2D) methods because they are fast and deliver practical results. However, because non-edge-glued panels cannot be modelled under 2D, these results may differ from more accurate calculations in three dimensions (3D). In this investigation, CLT panels with different width-to-thickness ratios for the boards have been simulated using the finite element method. The size of the CLT-panels was 3.0 m × 3.9 m and they had three and five laminate layers oriented 0°–90°–0° and 0°–90°–0°–90°–0°. The thicknesses of the boards were 33.33, 40.0, and 46.5 mm. The CLT panel deformation was compared by using a distributed out-of-plane load. Results showed that panels with narrow boards were less stiff than wide boards for the four-sided support setup. The results also showed that 2D models underestimate the displacement when compared to 3D models. By adjusting the stiffness factor k88, the 2D model displacement became more comparable to the 3D model.
Online Access
Free
Resource Link
Less detail