Skip header and navigation

4 records – page 1 of 1.

Environmental Response of a CLT Floor Panel: Lessons for Moisture Management and Monitoring of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2161
Year of Publication
2018
Topic
Site Construction Management
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Floors

Productivity in Multi-storey Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2096
Year of Publication
2019
Topic
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Wetting and Drying Performance of Cross-Laminated Timber Related to On-Site Moisture Protections: Field Measurements and Hygrothermal Simulations

https://research.thinkwood.com/en/permalink/catalogue2711
Year of Publication
2020
Topic
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Author
Wang, Lin
Wang, Jieying
Ge, Hua
Organization
Concordia University
FPInnovations
Publisher
EDP Sciences
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Site Construction Management
Keywords
Hygrothermal
Simulation
Hygrothermal Models
On-site Wetting
Conference
Nordic Symposium on Building Physics
Research Status
Complete
Summary
Cross-laminated timber (CLT) panels are increasingly used in mid-rise buildings or even taller structures in North America. However, prolonged exposure to moisture during construction and in service is a durability concern for most wood products including CLT. To investigate practical solutions for reducing on-site wetting of mass timber construction, CLT specimens with a range of moisture protection measures, in six groups were tested in the backyard of FPInnovations’ Vancouver laboratory from Oct. 2017 to Jan. 2018. This study investigates the wetting and drying behaviours of the tested CLT specimens through 2-D hygrothermal simulations. The simulations are performed for base specimens (no protection measures) of group 1 (without joint or plywood spline) and group 2 (with a butt joint and plywood spline). For group 1, three data sources of material properties are used to create the models, and the data that led to the best agreement between simulations and measurement are used for creating the models of group 2. For group 2, two types of hygrothermal models are created with or without considering the differences in water absorption between the transverse and the longitudinal grain orientations. In addition, rain penetration is taken into account for the joint area. It is found that the model with considering the differences between transverse and longitudinal grain orientations shows a better agreement than that without considering such differences.
Online Access
Free
Resource Link
Less detail

Wetting and Drying Performance Related To On-Site Moisture Protection of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1169
Year of Publication
2018
Topic
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Moisture
Site Construction Management
Keywords
On-Site
Moisture Management
Water Repellants
Rain
Research Status
Complete
Summary
Practical solutions are needed for on-site moisture management of mass timber construction. Six groups of cross-laminated timber (CLT) specimens, together with reference specimens including plywood, OSB, and nail-laminated timber were assessed for their wetting and drying behaviour. The focus of this study was to assess the effectiveness of water repellents and membranes installed on CLT in preventing the wetting that can be caused by, for example, rain during outdoor exposure, installation of wet concrete topping, or sitting on a damp concrete slab. Seven water repellent products covering a range of formulations and three membranes including a self-adhered vapour-permeable membrane, a self-adhered vapour-impermeable membrane, and a lumber wrap were assessed as potential temporary moisture protection measures. Implications for moisture protection practices based on the test were summarized at the end of this report.
Online Access
Free
Resource Link
Less detail