Skip header and navigation

8 records – page 1 of 1.

Accuracy Evaluation of Gamma-Method for Deflection Prediction of Partial Composite Beams

https://research.thinkwood.com/en/permalink/catalogue1911
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Wood Building Systems
Beams

An Innovative Hybrid Timber Structure in Japan: Performance of Column and Beams

https://research.thinkwood.com/en/permalink/catalogue1759
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Shioya, Shinichi
Koga, Takeshi
Kumon, Yuto
Otsuki, Kazuaki
Uchimura, Kohei
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Mechanical Properties
Keywords
Japanese Cedar
Reinforcement
Steel Bars
Epoxy
Flexural Stiffness
Flexural Strength
Reverse Cyclic Loading
Force-Displacement Curves
Strain Distribution
Failure
Numerical Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5058-5067
Summary
In this paper, bending behaviours in hybrid composite glulam timbers reinforced using deformed steel bars and epoxy resin adhesives (RGTSB) are presented. The technique RGTSB was developed in order to improve flexural stiffness and strength in glulam timbers...
Online Access
Free
Resource Link
Less detail

Assessment of Timber Floor Vibration Performance: A Case Study in Italy

https://research.thinkwood.com/en/permalink/catalogue147
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Casagrande, Daniele
Piazza, Maurizio
Franciosi, Alessandro
Pederzolli, Federico
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Dynamic
Eurocode
ISO
Italy
Natural Frequency
Numerical analysis
Testing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibrations induced by people walking is one of the most important issue in timber floor design. Low natural frequency and low mass require a careful analysis in order to prevent significant annoyance and to guarantee an acceptable human comfort. This paper is concerned with the assessment of vibration performance of a timber-concrete composite timber floor and a cross laminated timber floor used in two timber buildings under construction in Trento (Italy). Different approaches suggested by Standards and literature were employed: analytical methods, numerical analyses and laboratory tests. About analytical methods the uniformed distributed load deflection criterion (ULD), the Eurocode 5 criterion and some criterions from literature were compared, whereas the Vibration Dose Value (VDV) method, as suggested by ISO 10137, was used for the numerical models and the laboratory tests. The numerical analyses were carried out by means of a finite element modelling. The load due to footfall was simulated by static and dynamic vertical forces. The laboratory tests were characterized by thirty walking tests for each floor. Impact testing with modal hammer was also undertaken in order to investigate the dynamic properties of the specimens. All results are compared and discussed.
Online Access
Free
Resource Link
Less detail

Characterizing and Quantifying Environmental and Economic Benefits of Cross Laminated Timber Buildings across the U.S.

https://research.thinkwood.com/en/permalink/catalogue2564
Topic
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Colorado School of Mines
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Cost
Energy Performance
Keywords
Numerical Analysis
Whole Building Energy Model
Building Envelope
Monitoring
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Paulo Tabares at the Colorado School of Mines
Summary
Cross Laminated Timber (CLT) is a mass timber material that has the potential to expand the wood building market in the U.S. However, new sustainable building technologies need extensive field and numerical validation quantifying environmental and economic benefits of using CLT as a sustainable building material so it can be broadly adopted in the building community. These benefits will also be projected nationwide across the United States once state-of-the-art software is validated and will include showcasing and documenting synergies between multiple technologies in the building envelope and heating, ventilation and air conditioning (HVAC) systems. However, there are no such studies for CLT. The objective of this project is to quantify and showcase environmental and economic benefits of CLT as a sustainable building material in actual (and simulated) commercial buildings across the entire United States by doing: (1) on-site monitoring of at least four CLT buildings, (2) whole building energy model validation, (3) optimization of the performance and design for CLT buildings and (4) comparison with traditional building envelopes. This knowledge gap needs to be filled to position CLT on competitive grounds with steel and concrete and is the motivation for this study.
Less detail

Development of High Load Carrying Capacity Shear Wall with Thick Plywood Sheathing for Large Timber Construction

https://research.thinkwood.com/en/permalink/catalogue678
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Shear Walls
Author
Aoki, Kenji
Sugimoto, Kenichi
Kamiya, Fumio
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Larch
Load Carrying Capacity
Bearing Force
Numerical analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Recently, the numerical value and the technical information of the design are insufficient though an increase of a large timber construction is expected. In this research, a high load carrying capacity shear wall with thick plywood sheathings for the large timber construction was developed, and its static bearing force was confirmed experimentally. And the bearing force of the shear wall was calculated by using past numerical analysis methods. As a result, the development of the wall having the target bearing force succeeded, and the numerical analysis method could be applied to the high load carrying capacity shear wall.
Online Access
Free
Resource Link
Less detail

Diaphragmatic Behaviour of Hybrid Cross-Laminated Timber Steel Floors

https://research.thinkwood.com/en/permalink/catalogue1909
Year of Publication
2018
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors

Innovative Construction System for Sustainable Buildings

https://research.thinkwood.com/en/permalink/catalogue140
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Shear Walls
Author
Loss, Cristiano
Piazza, Maurizio
Zandonini, Riccardo
Year of Publication
2015
Country of Publication
Switzerland
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Shear Walls
Topic
Cost
Design and Systems
Keywords
Prefabrication
Residential
Timber-Steel Hybrid
Numerical Analysis
Multi-Storey
Joints
Language
English
Conference
International Association for Bridge and Structural Engineering Conference
Research Status
Complete
Notes
September 23-25, 2015, Geneva, Switzerland
Summary
This paper deals with a contemporary integrated and sustainable construction technology for new residential buildings. Specifically, this research aims at developing innovative steel-timber hybrid structures which allow a rapid assembly of the individual prefabricated components, minimizing the construction times and limiting the costs of the work. The numerical analyses performed on a multi-storey building for social housing will be presented and discussed. The in-plane behaviour of the floors and shear walls will be analysed, considering in particular the types and arrangement of the different timber- and steel-timber joints. The connections to be used among the construction elements will be selected in order to develop a sufficient stiffness, ductility and bearing capacity according to the design criteria for seismic-resistant structures. These connections allow to enhance the on-site assembly operations, therefore working effectively also under harsh climatic conditions.
Online Access
Free
Resource Link
Less detail

The Use of Cross Laminated Timber for Long Span Flooring in Commercial Buildings

https://research.thinkwood.com/en/permalink/catalogue1739
Year of Publication
2016
Topic
Acoustics and Vibration
Serviceability
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Lewis, Kirsten
Basaglia, Bella
Shrestha, Rijun
Crews, Keith
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Connections
Keywords
Long Span
Australia
New Zealand
Transverse Stiffness
Vibration Performance
Boundary Conditions
Numerical Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4845-4853
Summary
Long span timber floor solutions have demonstrated their potential to compete with concrete and steel construction for multi-storey commercial buildings. Due to the high strength-to-weight ratio of timber, serviceable vibration performance is a critical structural design issue for long spans. This project investigates the vibration...
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.