Skip header and navigation

78 records – page 1 of 8.

Accuracy Evaluation of Gamma-Method for Deflection Prediction of Partial Composite Beams

https://research.thinkwood.com/en/permalink/catalogue1911
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Wood Building Systems
Beams

Analysis of Rotational Stiffness of the Timber Frame Connection

https://research.thinkwood.com/en/permalink/catalogue2763
Year of Publication
2020
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Johanides, Marek
Kubíncová, Lenka
Mikolášek, David
Lokaj, Antonín
Sucharda, Oldrich
Mynarcík, Petr
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Connections
Keywords
Rotational Stiffness
Frame Connection
Screw
Numerical Model
FEM
Finite Element Model
Mechanical Fasteners
Language
English
Research Status
Complete
Series
Sustainability
Summary
Initially, timber was considered only as an easily accessible and processable material in nature; however, its excellent properties have since become better understood. During the discovery of new building materials and thanks to new technological development processes, industrial processing technologies and gradually drastically decreasing forest areas, wood has become an increasingly neglected material. Load-bearing structures are made mostly of reinforced concrete or steel elements. However, ecological changes, the obvious problems associated with environmental pollution and climate change, are drawing increasing attention to the importance of environmental awareness. These factors are attracting increased attention to wood as a building material. The increased demand for timber as a building material offers the possibility of improving its mechanical and physical properties, and so new wood-based composite materials or new joints of timber structures are being developed to ensure a better load capacity and stiffness of the structure. Therefore, this article deals with the improvement of the frame connection of the timber frame column and a diaphragm beam using mechanical fasteners. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The subject of the research and its motivation was to replace these commonly used fasteners with more modern ones to shorten and simplify the assembly time and to improve the load capacity and rigidity of this type of frame connection.
Online Access
Free
Resource Link
Less detail

An Analytical, Numerical and Experimental Study of Non-Metallic Mechanical Joints for Engineered Timber Constructions

https://research.thinkwood.com/en/permalink/catalogue1606
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Bazu, Gheorghe
Mahjourian Namari, Siavash
Wehsener, Jörg
Hartig, Jens
Haller, Peer
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
GFRP
Densified Veneer Wood
Plates
Dowels
Load Bearing Behaviour
Analytical Model
Numerical Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2059-2068
Summary
Timber structures are strongly depending on the design of connections, which are mostly constructed from steel components. However, these joints have a number of limitations such as the tendency to be heavy, proneness to corrosion and often poor aesthetic appearances. Therefore, this study aims to replace metallic joints by non-metallic materials. An experimental testing program was performed to investigate the use of glass fiber reinforced plastics (GFRP), densified veneer wood (DVW) and laminated veneer lumber (LVL) in the form of plates and dowels in different test configurations. Analytical and numerical models were developed to better understand the load-bearing behaviour and to perform static verifications. The models were validated based on the experimental results. The results demonstrate that the use of GFRP dowels in combination with GFRP plates can provide a robust connection system for contemporary applications.
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Performance of Column and Beams

https://research.thinkwood.com/en/permalink/catalogue1759
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Shioya, Shinichi
Koga, Takeshi
Kumon, Yuto
Otsuki, Kazuaki
Uchimura, Kohei
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Mechanical Properties
Keywords
Japanese Cedar
Reinforcement
Steel Bars
Epoxy
Flexural Stiffness
Flexural Strength
Reverse Cyclic Loading
Force-Displacement Curves
Strain Distribution
Failure
Numerical Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5058-5067
Summary
In this paper, bending behaviours in hybrid composite glulam timbers reinforced using deformed steel bars and epoxy resin adhesives (RGTSB) are presented. The technique RGTSB was developed in order to improve flexural stiffness and strength in glulam timbers...
Online Access
Free
Resource Link
Less detail

An Uplift Friction Damper for Seismically Resilient Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2799
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Organization
Michigan Technological University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Seismic Force Resisting System
Uplift Friction Damper
Energy Dissipation
Self-Centering
Numerical Model
Tall Wood Buildings
National Earthquake Hazards Reduction Program
Research Status
In Progress
Notes
Project contact is Daniel Dowden at Michigan Technological University
Summary
This award will investigate a low-damage solution for cross-laminated timber (CLT) seismic force-resisting systems (SFRSs) using a novel uplift friction damper (UFD) device for seismically resilient mass-timber buildings. The UFD device will embrace the natural rocking wall behavior that is expected in tall CLT buildings, provide stable energy dissipation, and exhibit self-centering characteristics. Structural repair of buildings with these devices is expected to be minimal after a design level earthquake. Although CLT has emerged as a construction material that has revitalized the timber industry, there exists a lack of CLT-specific seismic energy dissipation devices that can integrate holistically with the natural kinematics of CLT-based SFRSs. CLT wall panels themselves do not provide any measurable seismic energy dissipation. As a payload to the large-scale, ten-story CLT building specimen to be tested on the Natural Hazards Engineering Research Infrastructure (NHERI) shake table at the University of California, San Diego, as part of NSF award 1636164, “Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings,” this project will conduct a series of tests with the UFD devices installed on the CLT building specimen. These tests will bridge analytical and numerical models with the high fidelity test data collected with realistic boundary and earthquake loading conditions. The calibrated models will be incorporated in a probabilistic numerical framework to establish a design methodology for seismically resilient tall wood buildings, leading to a more diverse and eco-sustainable urban landscape. This project will provide local elementary school outreach activities, integrate participation of undergraduate minorities and underrepresented groups into the research activities, and foster graduate level curriculum innovations. Project data will be archived and made available publicly in the NSF-supported NHERI Data Depot (https://www.DesignSafe-CI.org). This award contributes to NSF's role in the National Earthquake Hazards Reduction Program (NEHRP). The research objectives of this payload project are to: 1) bridge the fundamental mechanistic UFD models linking analytical and numerical models necessary for seismic response prediction of seismically resilient CLT-based SFRSs, 2) characterize the fundamental dynamic UFD behavior with validation and calibration through large-scale tests with realistic boundary conditions and earthquake loadings, and 3) integrate low-damage, friction-based damping system alternatives within a resilience-based seismic design methodology for tall wood buildings. To achieve these objectives, the test data collected will provide a critical pathway to reliably establish numerical and analytical models that extend the shake table test results to a broad range of archetype buildings. The seismic performance of mass-timber archetype building systems will be established through collapse risk assessment using incremental dynamic analyses. This will provide a first step in the longer term goal of establishing code-based seismic performance factors for CLT-based SFRSs.
Resource Link
Less detail

Assessment of Timber Floor Vibration Performance: A Case Study in Italy

https://research.thinkwood.com/en/permalink/catalogue147
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Casagrande, Daniele
Piazza, Maurizio
Franciosi, Alessandro
Pederzolli, Federico
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Dynamic
Eurocode
ISO
Italy
Natural Frequency
Numerical analysis
Testing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibrations induced by people walking is one of the most important issue in timber floor design. Low natural frequency and low mass require a careful analysis in order to prevent significant annoyance and to guarantee an acceptable human comfort. This paper is concerned with the assessment of vibration performance of a timber-concrete composite timber floor and a cross laminated timber floor used in two timber buildings under construction in Trento (Italy). Different approaches suggested by Standards and literature were employed: analytical methods, numerical analyses and laboratory tests. About analytical methods the uniformed distributed load deflection criterion (ULD), the Eurocode 5 criterion and some criterions from literature were compared, whereas the Vibration Dose Value (VDV) method, as suggested by ISO 10137, was used for the numerical models and the laboratory tests. The numerical analyses were carried out by means of a finite element modelling. The load due to footfall was simulated by static and dynamic vertical forces. The laboratory tests were characterized by thirty walking tests for each floor. Impact testing with modal hammer was also undertaken in order to investigate the dynamic properties of the specimens. All results are compared and discussed.
Online Access
Free
Resource Link
Less detail

Buildings Made of Dowel-Laminated Timber: Joint and Shear Wall Properties

https://research.thinkwood.com/en/permalink/catalogue1718
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Connections
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Author
Sandhaas, Carmen
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Seismic
Connections
Keywords
Joints
Load Carrying Capacity
Cyclic Tests
Energy Dissipation
Behaviour Factors
Numerical Models
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4589-4596
Summary
Dowel-laminated timber (DLT) elements consist of lamellae arranged side-by-side that are connected with beech dowels. Due to the glue-free DLT element layup, joints and shear walls potentially suffer from considerable reduction of stiffness and load carrying capacity as metal fasteners inserted perpendicular to the element plane may be placed in gaps between the single lamellae. Tests on typical joints showed that, depending on the fastener diameter, the remaining load carrying capacity of joints in DLT in comparison to joints in solid wood may be only 25%. Tests on DLT shear walls with different sheeting proved that the use of DLT structures as shear walls is only possible if at least one-sided sheeting is used. Cyclic tests on DLT shear walls demonstrated that the DLT construction typology has energy dissipation properties similar to traditional timber frame construction. Analogously, preliminary behaviour factors for DLT buildings evaluated with numerical models were also similar to those for timber frame buildings.
Online Access
Free
Resource Link
Less detail

Capacity Prediction for Glued-In FRP Joints

https://research.thinkwood.com/en/permalink/catalogue2022
Year of Publication
2018
Topic
Connections
Material
Glulam (Glue-Laminated Timber)

Characterizing and Quantifying Environmental and Economic Benefits of Cross Laminated Timber Buildings across the U.S.

https://research.thinkwood.com/en/permalink/catalogue2564
Topic
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Colorado School of Mines
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Cost
Energy Performance
Keywords
Numerical Analysis
Whole Building Energy Model
Building Envelope
Monitoring
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Paulo Tabares at the Colorado School of Mines
Summary
Cross Laminated Timber (CLT) is a mass timber material that has the potential to expand the wood building market in the U.S. However, new sustainable building technologies need extensive field and numerical validation quantifying environmental and economic benefits of using CLT as a sustainable building material so it can be broadly adopted in the building community. These benefits will also be projected nationwide across the United States once state-of-the-art software is validated and will include showcasing and documenting synergies between multiple technologies in the building envelope and heating, ventilation and air conditioning (HVAC) systems. However, there are no such studies for CLT. The objective of this project is to quantify and showcase environmental and economic benefits of CLT as a sustainable building material in actual (and simulated) commercial buildings across the entire United States by doing: (1) on-site monitoring of at least four CLT buildings, (2) whole building energy model validation, (3) optimization of the performance and design for CLT buildings and (4) comparison with traditional building envelopes. This knowledge gap needs to be filled to position CLT on competitive grounds with steel and concrete and is the motivation for this study.
Less detail

78 records – page 1 of 8.