Skip header and navigation

4 records – page 1 of 1.

Analytical Model to Evaluate the Equivalent Viscous Damping of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1893
Year of Publication
2012
Topic
Connections
Application
Frames
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Year of Publication
2012
Format
Conference Paper
Application
Frames
Topic
Connections
Keywords
Equivalent Viscous Damping
Moment Resisting Joints
Dowel-Type Connections
Non-linear Dynamic Analysis
Metal Fasteners
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 16-19, 2012, Auckland, New Zealand
Summary
The Equivalent Viscous Damping (EVD) parameter is used to simplify the dynamic problem, passing from a non-linear solution of the system to a simple linear-elastic one. In the case of Direct Displacement-Based seismic Design (DDBD) methods, the EVD value allows direct design of structures, without an iterative computational process. This paper proposes a rational analytical formula to evaluate the EVD value of timber structures with dowel-type metal fastener connections. The EVD model is developed at the ultimate limit state, as a solution of the equilibrium problem related to an inelastic configuration. For a specific joint configuration, the EVD predicted via an analytical model was compared to experimental results. The proposed EVD model was validated using non-linear dynamic analysis on a portal frame, built with dowel-type fasteners arranged in two concentric crowns.
Online Access
Free
Resource Link
Less detail

Ductility of Wooden Structures Including Solid Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2189
Topic
Design and Systems
Seismic
Application
Wood Building Systems
Organization
Université de Sherbrooke
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Pushover Response
Ductility Factors
Non-linear Dynamic Analysis
Research Status
In Progress
Notes
Project contact is Jean Proulx at Université de Sherbrooke
Summary
This project will involve the modeling of typical multistage buildings and non-linear dynamic analyzes for various seismic hazards (Montreal, Quebec, Charlevoix). The models will be developed using OpenSees, and validated with commercial software (SAFI, SAP2000). The temporal responses of typical buildings, subject to earthquakes generated for the region, will be calculated for different parameters (number of floors, bays, types of SRFS). Pushover type analyzes will also be carried out (rigid frame systems or shear walls). Sectional ductility demands will be evaluated for different types of wood sections and assemblies. These ductility values will be used to target the best wood seismic resistance systems, depending on the type of construction.
Less detail

Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1221
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying-hei
Publisher
Frontiers Media
Year of Publication
2017
Format
Journal Article
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems
Topic
Seismic
Wind
Design and Systems
Keywords
Lateral Load Resisting System
High-Rise
Dowel-Type Connections
FE model
Linear Static Analysis
Non-linear Dynamic Analysis
Timber-Steel Hybrid
Research Status
Complete
Series
Frontiers in Built Environment
Summary
As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs) with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE) model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.
Online Access
Free
Resource Link
Less detail

Technical Guide for Evaluation of Seismic Force Resisting Systems and Their Force Modification Factors for Use in the National Building Code of Canada with Concepts Illustrated Using a Cantilevered Wood CLT Shear Wall Example

https://research.thinkwood.com/en/permalink/catalogue2804
Year of Publication
2021
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
DeVall, Ron
Popovski, Marjan
McFadden, Jasmine
Organization
National Research Council Canada, Canadian Construction Materials Centre
Publisher
National Research Council Canada
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Seismic Force Resisting System
Force Modification Factor
Ductility Factor
Overstrength
Non-linear Dynamic Analysis
National Building Code of Canada
Alternative Design Solution
Shear Walls
Research Status
Complete
Summary
The objective of this guideline is to provide a simple, systematic, and sufficient procedure for evaluating the performance of Seismic Force Resisting Systems (SFRSs) and to determine the appropriate ductilityrelated (Rd) and over-strength related (Ro) force modification factors for implementation in the National Building Code of Canada (NBC). The procedure relies on the application of non-linear dynamic analysis for quantification of the seismic performance of the SFRS. Note that the procedure is also suitable for assessing force modification factors (RdRo values) of systems already implemented in the NBC. The audience for this guideline are those (called the “project study team” in this document) who submit proposals for new SFRSs with defined RdRo values to the NBC for inclusion in Subsection 4.1.8., Earthquake Loads and Effects, of Division B of the NBC. This guideline can also be used by a team performing an alternative design solution for a specific project and seeking acceptance from authority having jurisdiction. In such cases, not all aspects of this guideline (e.g., having different archetypes) will be needed.
Online Access
Free
Resource Link
Less detail