Skip header and navigation

7 records – page 1 of 1.

Actuarial Contribution to the Understanding of Insurable Risks Related to Non-residential High-rise Buildings in CLT

https://research.thinkwood.com/en/permalink/catalogue2194
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Université Laval
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Non-Residential
Course of Construction Insurance
Research Status
In Progress
Notes
Project contact is Étienne Marceau at Université Laval
Summary
The objective of this project is to identify the risk factors taken into account in the pricing of an insurance contract for a construction site. This project aims to synthesize the quantitative approaches used in practice and presented in academic research for the pricing of home insurance and commercial insurance. Then, we aim to identify the preventive measures that can be taken to reduce the impact of different perils in the insurance of a construction site in wood or other.
Less detail

Canadian Mass Timber Demonstration Projects Initiatives

https://research.thinkwood.com/en/permalink/catalogue2147
Year of Publication
2019
Topic
Market and Adoption
Application
Wood Building Systems

Enable the Use of Mass Timber Products for Non-Residential Buildings in High Velocity Hurricane Zone

https://research.thinkwood.com/en/permalink/catalogue2630
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Clemson University
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Wind
Keywords
High Velocity Hurricane Zone
Wind Load
Debris Impact Testing
Non-Residential
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Weichiang Pang at Clemson University
Summary
The overall goal of this project is to enable the use of cross laminated timber (CLT) to construct commercial and other non-residential buildings in High Velocity Hurricane Zone (HVHZ). The 1992 Hurricane Andrew exposed the shortcomings of existing building codes. Recognizing this shortcomings, the Florida Building Code (FBC) incorporated new enhanced provisions which specifically require that the entire building envelope, including the wall and roof systems, must be impact resistant in HVHZ. Currently, CLT is not in the database of a list of building envelope products that comply with the HVHZ standard. The specific objectives of this project are (1) to qualify PRG-320 compliance CLT panels for HVHZ standard by conducting FBC debris impact and wind pressure cyclic tests; (2) to conduct education and outreach sessions to promote the use of CLT in HVHZ, and (3) to identify possible construction projects that may utilize CLT as the building envelope and promote the use of CLT in those projects. The test results generated in this project will be used specifically to gain HVHZ building code approval.
Less detail

Fire Loads and Design Fires for Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1587
Year of Publication
2012
Topic
Fire
Application
Wood Building Systems
Author
Ocran, Naki
Organization
Carleton University
Year of Publication
2012
Format
Thesis
Application
Wood Building Systems
Topic
Fire
Keywords
Residential
Non-Residential
Mid-Rise
Heat Release Rate
Fire Loads
Fire Resistance
CUrisk
Research Status
Complete
Summary
This study which involves the development of fire loads and design fires for residential and non-residential mid-rise buildings is part of NEWBuildS’ “Rationalization o f Life Safety - Code Requirements fo r Mid-rise Buildings” project. The project is focused on analysing the code requirements that relate to fire resistance and the use of automatic sprinklers for mid-rise buildings built with combustible or non-combustible construction. The ultimate goal of the project is to come up with alternative solutions and, potentially, trigger changes in the code requirements for mid-rise buildings. A review, compilation, and analysis of fire load survey data was conducted from available literature for residential and office buildings. A web survey of floor areas was also conducted for floor areas of mid-rise buildings. Fire loads and fuel packages for midrise buildings were developed based on previous surveys as well as the web survey. The fire load data in conjunction with statistical data was used to select fire scenarios from which design fire scenarios were chosen. The fire characteristics of the selected fuel packages, such as heat release rate, and production of toxic gases, were analyzed using the two-zone fire risk analysis model, CUrisk, in order to develop appropriate design fires for mid-rise buildings.
Online Access
Free
Resource Link
Less detail

Innovative Engineered Timber Building Systems for Non-Residential Applications, Utilising Timber Concrete Composite Flooring Capable of Spanning Up to 8 to 10m

https://research.thinkwood.com/en/permalink/catalogue1933
Year of Publication
2010
Topic
Market and Adoption
Design and Systems
Cost
Environmental Impact
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Frames
Author
Crews, Keith
John, Stephen
Gerber, Christophe
Buchanan, Andrew
Smith, Tobias
Pampanin, Stefano
Publisher
Forest & Wood Products Australia
Year of Publication
2010
Format
Report
Material
Timber-Concrete Composite
Application
Floors
Frames
Topic
Market and Adoption
Design and Systems
Cost
Environmental Impact
Mechanical Properties
Keywords
Commercial
Non-Residential
New Zealand
Research Status
Complete
Summary
This project has developed technologies for prefabricated structural systems constructed from engineered wood products for floors and building frames, suitable for buildings up to eight stories in height. The project included the design of a virtual multi-storey timber building, a review of commercial flooring systems, and the development of interim design procedures for timber concrete composite (TCC) floors. Compared with either solid concrete or timber floors, TCC floors provide an excellent balance between increased stiffness, reduced weight, better acoustic separation and good thermal mass. Outcomes from the project have confirmed TCC floors as a viable alternative to conventional flooring systems. The life cycle analysis of the virtual timber building has highlighted the potential advantages of timber-based building systems for commercial applications. The project also resulted in the formation of the Structural Timber Innovation Company, a research company that will continue to develop timber building systems in non-residential buildings in Australia and New Zealand.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment and Environmental Building Declaration for the Design Building at the University of Massachusetts

https://research.thinkwood.com/en/permalink/catalogue1836
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gu, Hongmei
Bergman, Richard
Organization
Forest Products Laboratory
Publisher
United States Department of Agriculture
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Environmental Building Declaration
Life-Cycle Assessment
Green Building
Non-Residential
Leadership in Energy and Environmental Design (LEED)
Research Status
Complete
Summary
With the world’s increasing focus on sustainability in the construction sector through green building systems, the U.S. Department of Agriculture (USDA) has been actively engaged in green building advocacy in the United States through USDA Tall Wood Building competitions and follow-up research on use of mass timber for nonresidential buildings. The USDA Forest Service, Forest Product Laboratory (FPL) funded the study of environmental performance of the pioneer mass timber building (the John W. Olver Design Building) built at University of Massachusetts Amherst in 2016. The Athena Sustainable Materials Institute conducted the whole building life cycle assessment (LCA) using the Impact Estimator for Building software. Secondly, the reported LCA results led to development of an environmental building declaration (EBD) in conformance with European standard EN 15978. Environmental building declarations summarize the embodied and operational environmental impacts during the full building life cycle. An EBD is much like an environmental product declaration (EPD) which is intended for marketing and educational use, but instead of covering individual products like an EPD, an EBD covers the whole building. Lastly, the LCA results of the Design Building were then compared with a functionally equivalent steel and concrete building to acquire the whole building LCA credit in Leadership in Energy and Environmental Design (LEED) v.4 for green buildings. With the mass timber use in the Design Building, the building qualified for the whole building LCA credit in LEED v4. With this project, FPL is helping to standardize environmental performance reporting and advanced mass timber building sustainability.
Online Access
Free
Resource Link
Less detail

Mass Timber Construction in Australia and New Zealand—Status, and Economic and Environmental Influences on Adoption

https://research.thinkwood.com/en/permalink/catalogue2678
Year of Publication
2018
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Evison, David
Kremer, Paul
Guiver, Jason
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Non-Residential
Prefabrication
Design
Construction
Research Status
Complete
Series
Wood and Fiber Science
Summary
Mass timber construction in Australia and New Zealand uses three main materials—laminated veneer lumber, glue laminated timber and cross-laminated timber (CLT). This article focuses on the use of mass timber in nonresidential construction—the use in single-family homes and apartments is not considered. In Australia and New Zealand, mass timber building technology has moved from being technologically possible to being a feasible alternative to reinforced concrete and steel construction. It has not taken over a large market share in either market and, as such, has not been a disruptive technology. The major changes in this market in the past 5-10 yr in Australia and New Zealand have been the development of new industrial capacity in CLT and the acquisition of computer controlled machining equipment to facilitate prefabrication of wooden building components. The development of new codes and standards and design guides is underway. The drivers of future growth in market share are expected to include more clients putting a higher weight on the various environmental benefits of building in wood, reduction in the real and perceived professional risk for builders and architects specifying mass timber construction, and fuller participation in the supply chain for timber buildings (from design to construction) by timber building specialists. Government policies to encourage the use of timber may also be helpful. Engineers and architects will continue to learn—through experience—how to optimize building construction methods to take advantage of the specific features and qualities of timber as a construction method.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.