Skip header and navigation

17 records – page 1 of 2.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Assessment of Dynamic Characteristics of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1786
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hummel, Johannes
Seim, Werner
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Keywords
Natural Frequency
Multi-Storey
Force-Based Design
Stiffness
Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5819-5828
Summary
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
Online Access
Free
Resource Link
Less detail

Assessment of Timber Floor Vibration Performance: A Case Study in Italy

https://research.thinkwood.com/en/permalink/catalogue147
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Casagrande, Daniele
Piazza, Maurizio
Franciosi, Alessandro
Pederzolli, Federico
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Dynamic
Eurocode
ISO
Italy
Natural Frequency
Numerical analysis
Testing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibrations induced by people walking is one of the most important issue in timber floor design. Low natural frequency and low mass require a careful analysis in order to prevent significant annoyance and to guarantee an acceptable human comfort. This paper is concerned with the assessment of vibration performance of a timber-concrete composite timber floor and a cross laminated timber floor used in two timber buildings under construction in Trento (Italy). Different approaches suggested by Standards and literature were employed: analytical methods, numerical analyses and laboratory tests. About analytical methods the uniformed distributed load deflection criterion (ULD), the Eurocode 5 criterion and some criterions from literature were compared, whereas the Vibration Dose Value (VDV) method, as suggested by ISO 10137, was used for the numerical models and the laboratory tests. The numerical analyses were carried out by means of a finite element modelling. The load due to footfall was simulated by static and dynamic vertical forces. The laboratory tests were characterized by thirty walking tests for each floor. Impact testing with modal hammer was also undertaken in order to investigate the dynamic properties of the specimens. All results are compared and discussed.
Online Access
Free
Resource Link
Less detail

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency, which challenges the floor vibration controlled design. A laboratory study, including subjective evaluation and measurement of the natural frequencies and one-kN static deflections, was conducted on wood-concrete composite floors. Method of calculation of the composite bending stiffness of the wood-concrete composite floor is proposed. The design criterion for human comfort was derived from the subjective evaluation results using the calculated fundamental natural frequency and 1 kN static deflection of one meter wide strip of the composite floor. The equation to directly determine the vibration controlled spans from the stiffness and mass was derived. Limited verification was performed. Further verification is needed when more field wood-concrete composite floors become available.
Online Access
Free
Resource Link
Less detail

Dynamic Behaviour of LVL-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue315
Year of Publication
2015
Topic
Acoustics and Vibration
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Abd. Ghafar, Nor
Organization
University of Canterbury
Year of Publication
2015
Country of Publication
New Zealand
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Finite Element Model
Dynamic Behaviour
Natural Frequency
Mode shape
Electrodynamic Shaker
Boundary Conditions
Language
English
Research Status
Complete
Summary
This research focuses on the dynamic behaviour of long span LCC flooring systems. Experimental testing and finite element modelling was used to determine the dynamic behaviour, with particular regard to the natural frequency, fn and mode shape of an LCC floor. Both the experimental results and the finite element analyses agreed and showed that increased stiffness increased the natural frequency of the floor, and the boundary conditions influenced the dynamic behaviour of the LCC floor. Providing more restraint increased the stiffness of the floor system. The connectors' stiffness did not influence the dynamic performance of the floor. The research showed that a 8 m LCC long span floor can be constructed using LVL joists of between 300 mm to 400 mm depth with a concrete thickness of 65 mm for the longer spans, and joists of between 150 mm to 240 mm depth in conjunction with a concrete topping thickness of 100 mm for the shorter spans.
Online Access
Free
Resource Link
Less detail

Effect of End Support Conditions on the Vibrational Performance of Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue209
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Maldonado, Saul
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
End Support
Natural Frequency
Damping
Static Deflection
Finite Element Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This study focuses on the vibrational behaviour of 3, 5 and 7-layer cross-laminated timber (CLT) plates supported on two sides with different support conditions. Three end support setups are proposed; 1) top load over the two supported edges, 2) direct fastening to support using self-tapping screws, 3) steel angle bracket support. The measured response parameters are natural frequencies, damping, and static deflection under a point load. The rotational stiffness with load, screws and steel angle brackets will be characterized through static tests. In addition, the effect of the span is studied by varying the test span and repeating the vibration and deflection tests. The laboratory tests will be supplemented with analytical modelling. The expected outcome is the development of approaches to more accurately calculate the natural frequency and static deflection under a point load, which can account for the influence of common support conditions encountered in service.
Online Access
Free
Resource Link
Less detail

Efficient Measurement of Elastic Constants of Cross Laminated Timber using Modal Testing

https://research.thinkwood.com/en/permalink/catalogue117
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Author
Zhou, Jianhui
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Acoustics and Vibration
Keywords
Elasticity
Modal Testing
Modulus of Elasticity
Natural Frequency
Testing
Vibrations
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
It has been shown that measurement of elastic constants of orthotropic wood-based panel products can be more efficiently measured by modal testing technique. Identification of vibration modes and corresponding natural frequencies is key to the application of modal testing technique. This process is generally tedious and requires a number of measurement locations for mode shape identification. In this study, a simplified method for frequency identification was developed which will facilitate the adoption of the vibration-based testing technique for laboratory and industrial application. In the method, the relationship between frequency order and mode order is first studied considering the boundary condition, elastic properties of the orthotropic panel. An algorithm is proposed to predict the frequency values and mode indices based on corresponding normalized sensitivity to elastic constants, initial estimates of orthotropic ratios and measured fundamental natural frequency. The output from the algorithm can be used for identification of sensitive natural frequencies from up to three frequency spectra. Then the algorithm is integrated with the elastic calculation algorithm to extract the elastic constants from the sensitive frequencies. The elastic constants of cross laminated timber panels were measured by the proposed method. The moduli of elasticity agree well with static testing results. The calculated in-plane shear modulus was found to be within the expected range.
Online Access
Free
Resource Link
Less detail

Evaluation and Optimization of the Vibration Behavior of CLT-Concrete Floors

https://research.thinkwood.com/en/permalink/catalogue2673
Topic
Acoustics and Vibration
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Floors
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Finite Element Method (FEM)
Vibration Performance
Creep
Displacement
Natural Frequency
Research Status
In Progress
Notes
Project contact is Sylvain Ménard at Université Laval
Summary
Designers of large buildings generally want floor systems with large spans (9 m). These floors are often sized by the requirement of vibratory performance and, correlatively, deflection. The composite wood-concrete floors allow large spans with reduced static height. They are a promising alternative to simple concrete slabs. Objective 1 - Determine the evolution of the natural frequency of the CLT-concrete composite floor as a function of the stiffness of the connector, and correlate the experimental results with the model by the finite element method. Objective 2 - Parametric study of the vibration performance of the CLT-concrete composite floor. The impact of several parameters on the dynamic performance of the floor will be determined, especially the characteristics of the constituent materials, connector and the creep of the floor. Objective 3 - Build the metamodels for the study of multi-objective optimization optimization of a wood-concrete composite floor solution in relation to a regional problem in Aquitaine.
Resource Link
Less detail

In-Situ Testing at Wood Innovation and Design Centre: Floor Vibration, Building Vibration, and Sound Insulation Performance

https://research.thinkwood.com/en/permalink/catalogue284
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Hu, Lin
Pirvu, Ciprian
Ramzi, Redouane
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Natural Frequency
Damping Ratio
Static Deflection Testing
Vibration Performance
Sound Transmission
Language
English
Research Status
Complete
Summary
In order to address the lack of measured natural frequencies and damping ratios for wood and hybrid wood buildings, and lack of knowledge of vibration performance of innovative CLT floors and sound insulation performance of CLT walls and floors, FPInnovations conducted a series of performance testing at the Wood Innovation Design Centre (WIDC) in Prince George, BC in April 2014, during construction, and in May 2015, after building completion and during its occupation. This report describes the building, tested floor and wall assemblies, test methods, and summarizes the test results. The preliminary performance data provides critical feedback on the design of the building for resisting wind-induced vibration and on the floor vibration controlled design. The data can be further used to validate the calculation methods and tools/models of dynamic analysis.
Online Access
Free
Resource Link
Less detail

In-Situ Testing of the Wood Innovation and Design Centre for Serviceability Performance

https://research.thinkwood.com/en/permalink/catalogue1183
Year of Publication
2018
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Acoustics and Vibration
Keywords
Vibration Performance
Sound Insulation
Natural Frequencies
Damping Ratios
Ambient Vibration Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. The overall objectives of this stud were threefold: 1. The vibration performance tests were to experimentally determine the dynamic properties, e.g., natural frequencies (periods) and damping ratios of the WIDC building through ambient vibration testing on: o the bare structure in 2014, o the finished building upon completion of the construction with occupants in 2015, and o the finished building after 3 years of service in 2017. 2. The floor vibration tests were to evaluate vibration performance of the innovative CLT floor based on the bare floor fundamental natural frequency, 1 kN static deflection, and subjective evaluation. 3. The sound transmission tests were to determine the Apparent Sound Transmision Class (ASTC) and Apparent Impact Insulation Class (AIIC) of selected innovative CLT floor assemblies.
Online Access
Free
Resource Link
Less detail

17 records – page 1 of 2.