Skip header and navigation

17 records – page 1 of 2.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Brock Commons 18-Storey Building for Vibration and Acoustic performances

https://research.thinkwood.com/en/permalink/catalogue1180
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Non-Destructive Testing
Vibration Performance
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Testing
Apparent Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on their vibration and sound insulation performance. The sound insulation and vibration performance may not affect the building’s safety, but affects the occupants’ comfort and the proper operation of the buildings and the function of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Assessment of Dynamic Characteristics of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1786
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hummel, Johannes
Seim, Werner
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Keywords
Natural Frequency
Multi-Storey
Force-Based Design
Stiffness
Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5819-5828
Summary
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
Online Access
Free
Resource Link
Less detail

Assessment of Timber Floor Vibration Performance: A Case Study in Italy

https://research.thinkwood.com/en/permalink/catalogue147
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Casagrande, Daniele
Piazza, Maurizio
Franciosi, Alessandro
Pederzolli, Federico
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Dynamic
Eurocode
ISO
Italy
Natural Frequency
Numerical analysis
Testing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibrations induced by people walking is one of the most important issue in timber floor design. Low natural frequency and low mass require a careful analysis in order to prevent significant annoyance and to guarantee an acceptable human comfort. This paper is concerned with the assessment of vibration performance of a timber-concrete composite timber floor and a cross laminated timber floor used in two timber buildings under construction in Trento (Italy). Different approaches suggested by Standards and literature were employed: analytical methods, numerical analyses and laboratory tests. About analytical methods the uniformed distributed load deflection criterion (ULD), the Eurocode 5 criterion and some criterions from literature were compared, whereas the Vibration Dose Value (VDV) method, as suggested by ISO 10137, was used for the numerical models and the laboratory tests. The numerical analyses were carried out by means of a finite element modelling. The load due to footfall was simulated by static and dynamic vertical forces. The laboratory tests were characterized by thirty walking tests for each floor. Impact testing with modal hammer was also undertaken in order to investigate the dynamic properties of the specimens. All results are compared and discussed.
Online Access
Free
Resource Link
Less detail

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency...
Online Access
Free
Resource Link
Less detail

Dynamic Behaviour of LVL-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue315
Year of Publication
2015
Topic
Acoustics and Vibration
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors

Effect of End Support Conditions on the Vibrational Performance of Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue209
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Maldonado, Saul
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
End Support
Natural Frequency
Damping
Static Deflection
Finite Element Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This study focused on the vibrational behaviour of a 3-ply cross-laminated timber (CLT) plate supported on two sides with different support conditions. Three end support setups were studied; 1) top load over the two supported edges, 2) direct fastening t...
Online Access
Free
Resource Link
Less detail

Efficient Measurement of Elastic Constants of Cross Laminated Timber using Modal Testing

https://research.thinkwood.com/en/permalink/catalogue117
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Zhou, Jianhui
Chui, Ying Hei
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Acoustics and Vibration
Keywords
Elasticity
Modal Testing
Modulus of Elasticity
Natural Frequency
Testing
Vibrations
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
It has been shown that measurement of elastic constants of orthotropic wood-based panel products can be more efficiently measured by modal testing technique. Identification of vibration modes and corresponding natural frequencies is key to the application of modal testing technique. This process is generally tedious and requires a number of measurement locations for mode shape identification. In this study, a simplified method for frequency identification was developed which will facilitate the adoption of the vibration-based testing technique for laboratory and industrial application. In the method, the relationship between frequency order and mode order is first studied considering the boundary condition, elastic properties of the orthotropic panel. An algorithm is proposed to predict the frequency values and mode indices based on corresponding normalized sensitivity to elastic constants, initial estimates of orthotropic ratios and measured fundamental natural frequency. The output from the algorithm can be used for identification of sensitive natural frequencies from up to three frequency spectra. Then the algorithm is integrated with the elastic calculation algorithm to extract the elastic constants from the sensitive frequencies. The elastic constants of cross laminated timber panels were measured by the proposed method. The moduli of elasticity agree well with static testing results. The calculated in-plane shear modulus was found to be within the expected range.
Online Access
Free
Resource Link
Less detail

In-Situ Testing at Wood Innovation and Design Centre: Floor Vibration, Building Vibration, and Sound Insulation Performance

https://research.thinkwood.com/en/permalink/catalogue284
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Hu, Lin
Pirvu, Ciprian
Ramzi, Redouane
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Natural Frequency
Damping Ratio
Static Deflection Testing
Vibration Performance
Sound Transmission
Language
English
Research Status
Complete
Summary
In order to address the lack of measured natural frequencies and damping ratios for wood and hybrid wood buildings, and lack of knowledge of vibration performance of innovative CLT floors and sound insulation performance of CLT walls and floors, FPInnovations conducted...
Online Access
Free
Resource Link
Less detail

In-Situ Testing of the Wood Innovation and Design Centre for Serviceability Performance

https://research.thinkwood.com/en/permalink/catalogue1183
Year of Publication
2018
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Acoustics and Vibration
Keywords
Vibration Performance
Sound Insulation
Natural Frequencies
Damping Ratios
Ambient Vibration Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies...
Online Access
Free
Resource Link
Less detail

17 records – page 1 of 2.