Technical Guide for Evaluation of Seismic Force Resisting Systems and Their Force Modification Factors for Use in the National Building Code of Canada with Concepts Illustrated Using a Cantilevered Wood CLT Shear Wall Example
The objective of this guideline is to provide a simple, systematic, and sufficient procedure for evaluating the performance of Seismic Force Resisting Systems (SFRSs) and to determine the appropriate ductilityrelated (Rd) and over-strength related (Ro) force modification factors for implementation in the National Building Code of Canada (NBC). The procedure relies on the application of non-linear dynamic analysis for quantification of the seismic performance of the SFRS. Note that the procedure is also suitable for assessing force modification factors (RdRo values) of systems already implemented in the NBC.
The audience for this guideline are those (called the “project study team” in this document) who submit proposals for new SFRSs with defined RdRo values to the NBC for inclusion in Subsection 4.1.8., Earthquake Loads and Effects, of Division B of the NBC. This guideline can also be used by a team performing an alternative design solution for a specific project and seeking acceptance from authority having jurisdiction. In such cases, not all aspects of this guideline (e.g., having different archetypes) will be needed.
The acceptable solutions in Division B of the anticipated 2020 NBCC limit the height of Groups C and D buildings of sprinklered encapsulated mass timber construction (EMTC) to 12 storeys in building height, and a measured building height of 42m. The recently published 2021 IBC contains provisions to permit buildings of mass timber construction under the IBC Type IV construction, surpassing the NBCC provisions by maximum building height, building area, occupancy groups, and interior exposed timber. The IBC mass timber buildings are permitted to have a building height of maximum 18 storeys, depending on the occupancy group. Within Type IV construction, four subdivisions are described to have varying maximum permissible building height, area, fire resistance rating (FRR), and interior exposed timber.
Through a comparison of mass timber provisions of both Codes, relevant research reports, test reports, industry standards, this report documents the consequential and inconsequential differences and developed conclusions on whether the NBCC can adopt the IBC provisions, and with what modifications so that the new provisions may fit the NBCC context.
FPInnovations’involvement in various codes and standards technical committees aims to monitor, contributeor propose changes for improvement as well as to create new standards to include new wood products and systems based on knowledge developed from FPInnovations’ research activities. Involvement also allows FPInnovations to be aware of any potential changes to codes and standards and to recognize and address threats and opportunities for wood use. Codes and standards exist to protect consumers but are written to reflect the current practices and knowledge based on a consensus agreement by committee members. FPInnovations’ involvement in codes and standards committees helps to align the coming changes with new wood products. This InfoNote reports on FPInnovations’ contribution to the floor vibration-control design methods on codes and standards implementation and research.
The vulnerability of any building, regardless of the material used, in a fire situation is higher during the construction phase when compared to the susceptibility of the building after it has been completed and occupied. This is because the risks and hazards found on a construction site differ both in nature and potential impact from those in a completed building; and these risks are occurring at a time when the fire prevention elements that are designed to be part of the completed building are not yet in place. For these reasons, construction site fire safety includes some unique challenges. Developing an understanding of these hazards and their potential risks is the first step towards fire prevention and mitigation during the course of construction (CoC).
The objective of this work is to generate fire resistance data for NLT assemblies to address significant gaps in technical knowledge. This research will support designers and builders in the use of mass timber assemblies in larger and taller buildings, as well as provide scientific justification for Authorities Having Jurisdiction (AHJ) to review and accept this construction method. The intent is to demonstrate that NLT construction can meet or exceed NBCC fire safety requirements for use in buildings of mass timber construction.
The data could be used towards the inclusion of an NLT fire resistance calculation methodology into Annex B of CSA 086 - Engineering Design for Wood, which currently addresses only glue-laminated timber (GLT), structural composite lumber (SCL) and cross-laminated timber (CLT).
The nature and the complexity of building codes, including the fire regulations, result in mainly manual verification and, therefore, in subjective potential interpretations or errors. In the case of timber construction, the fire safety regulations are moreover a challenge due to the combustibility of the material. Further integration of fire safety is needed during the design process in order to increase the reliability of the designs in terms of fire safety. Building information modelling (BIM) technologies offer today new tools for automating different tasks in the construction process. The different approaches and available tools have been therefore compared in the context of fire protection code compliance. For that matter, criteria applicable to the tools have been identified based on literature review and on the National Building Code of Canada prescriptive provisions, but also based on a practical manipulation of the available tools. The potential of the different tools is therefore assessed based on their integration of the fire protection concepts and on their adaptability to BIM. This contextualized comparison has shown that the fire protection integration in BIM is limited. The tools for performance-based fire protection design are not exploring enough the information contained by the building model that is beyond the geometry. The BIM-based compliance checking tools, in turn, contain insufficient space for fire safety regulations checking as advanced spatial study is required for this purpose. Thus, this paper demonstrates the need for further development in terms of exploiting the building models’ semantics in the fire protection context.
The rate at which flame spreads on the exposed interior surfaces or a room or space can have an impact on the rate of fire growth within an area, especially if the materials of the exposed surfaces are highly flammable. Therefore, the National Building Code of Canada (NBC) regulates the surface flammability of any material that forms part of the interior surface of walls, ceilings and, in some cases, floors, in buildings. Based on a standard fire-test method, the NBC uses a rating system to quantify surface flammability that allows comparison of one material to another, and the ratings within that system are called flame-spread ratings (FSR).
Fire separations and fire-resistance ratings are often required together but they are not interchangeable terms, nor are they necessarily mutually inclusive. The National Building Code of Canada (NBC)1 provides the following definitions: A fire separation is defined as “a construction assembly that acts as a barrier against the spread of fire.” A fire-resistance rating is defined as “the time in minutes or hours that a material or assembly of materials will withstand the passage of flame and the transmission of heat when exposed to fire under specified conditions of test and performance criteria, or as determined by extension or interpretation of information derived therefrom as prescribed in [the NBC].” In many buildings, the structural members such as beams and columns, and structural or non-structural assemblies such as walls and floors, are required to exhibit some degree of resistance to fire in order to prevent the spread of fire and smoke, and/or to minimize the risk of collapse of the building in the event of a fire. However, fire separations are assemblies that may or may not be required to have a specific fire-resistance rating, while structural members such as beams and columns that require a fireresistance rating to maintain the structural stability of a building in the event of a fire are not fire separations because they do not “act as a barrier against the spread of fire.”
FPInnovations initiated this project to demonstrate the ability of wood exit stairs in mid-rise buildings to perform adequately in a fire when NBCC requirements are followed, with the intent of changing perceptions of the fire safety of wood construction. The objective of this research is to investigate further the fire safety afforded by exit stair shafts of combustible construction, with the ultimate objective of better consistency between the provincial and national building codes with respect to fire requirements for exit stair shafts in mid-rise wood-frame construction.
Sustainable, safe, durable, cost-effective and efficient; wood is used across Canada in occupancy classes such as business, residential, commercial and assembly. In the United States, many mixed-use buildings have been designed as “podium” buildings; a wood structure bearing on a podium of noncombustible construction. The International Building Code includes provisions that allow wood buildings, often housing residential or business occupancies, to be constructed over a podium of noncombustible construction accommodating mercantile or assembly occupancies.
The concept of a horizontal fire separation, acting to a certain degree as a “horizontal firewall”, was introduced in the International Building Code in the mid-2000s, allowing the podium to be considered a separate and distinct building from the wood structure that sits overtop. Since podium structures are becoming increasingly “à la mode” in the construction industry, integrating the horizontal fire separation concept into the National Building Code of Canada would allow the industry to benefit from the advantages of wood construction in mixed-use buildings
At the request of FPInnovations, this technical report has been prepared as a guideline for the implementation of design provisions for wood podium buildings into the National Building Code of Canada. Various strategies, special considerations, and possible risks for fire safety in this type of building are explored.