Skip header and navigation

7 records – page 1 of 1.

Accurate Strength Parameters for Fasteners with Examples for Ring Shank Nails

https://research.thinkwood.com/en/permalink/catalogue1510
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Munch-Andersen, Jørgen
Svensson, Staffan
Year of Publication
2016
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Withdrawal Test
Ring Shank Nails
Fasteners
Strength
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 344-352
Summary
Strength parameters for fasteners determined in accordance with the methods prescribed for the European CE-marking leads to quite different values for seemingly similar products from different manufactures. The results are hardly repeatable, to some extent due to difficulties in selecting representative timber samples for the testing. Beside this uncertainty, the declared values available to the designer concerns only structural timber, so no strength parameters are available for common engineered wood products such as LVL or plywood
Online Access
Free
Resource Link
Less detail

Experimental Investigation on Axial Compression of Resilient Nail-Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2832
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Nehdi, Moncef
Zhang, Yannian
Gao, Xiaohan
Zhang, V. Lei
Suleiman, R. Ahmed
Organization
Western University
Shenyang Jianzhu University
Editor
Billah, Muntasir
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Keywords
Nails
Axial Compression
Nail-Cross-Laminated Timber
Slenderness Ratio
Research Status
Complete
Summary
Conventional cross-laminated timber is an engineered wood product consisting of solid sawn lumber panels glued together. In this study, the structural behavior of solid wood panels of Nail-Cross-Laminated Timber (NCLT) panels connected with nails instead of glue was studied. The failure mode and nail deformation of the novel NCLT panels under axial compression load using eight full-scale NCLT panels was investigated. The effects of four key design parameters, namely, the nail type, number of nails, nail orientation angle, and nail slenderness ratio on axial compression performance of NCLT panels were also analyzed. In addition, a formula for predicting the axial compression bearing capacity of NCLT panels was developed. For calculation of the slenderness ratio, the moment of inertia of the full section or the effective section was determined based on the nail type, number of nails, angle of nail orientation and number of layers of the plate. Results showed that specimens connected by tapping screws had best compressive performance.
Online Access
Free
Resource Link
Less detail

Finite Element Simulation of Nailed Glulam Timber Joints

https://research.thinkwood.com/en/permalink/catalogue333
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Ekevad, Mats
Berg, Sven
Year of Publication
2015
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Finite Element Model
Joints
Nails
Steel Plate
Research Status
Complete
Series
Pro Ligno
Summary
This paper presents a finite element modeling method for a certain type of nailed joint between glulam beams. The joint in question is a traditional arrangement of a horizontal beam and a vertical pillar but here there is also a nailed steel plate inserted on the two sides in order to strengthen the joint. Experimental results and a comparisons of simulated and experimental results are made. The model includes the elastic and plastic orthotropic behaviour of wood and the elastic and plastic behaviour of nails. The nail joint between the steel plate and the wood is modelled as an elastic-plastic surface to surface connection with elastic-plastic properties. Also the reinforcing effect of nails in the nail-affected volume of wood is taken into consideration by raising rolling shear yield limit in the affected wood volume.The comparisons show that the model works well and give results that are comparable to experimental results.
Online Access
Free
Resource Link
Less detail

Flexural Performance of Novel Nail-Cross-Laminated Timber Composite Panels

https://research.thinkwood.com/en/permalink/catalogue2649
Year of Publication
2020
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Zhang, Yannian
Nehdi, Moncef
Gao, Xiaohan
Zhang, V. Lei
Organization
Western University
Shenyang Jianzhu University
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Mechanical Properties
Design and Systems
Keywords
Panels
Flexural Performance
Nails
Bending
Model
Prediction
Fracture
Nail-Cross-Laminated Timber
Research Status
Complete
Series
Applied Sciences
Summary
Cross-laminated timber (CLT) is an innovative wood panel composite that has been attracting growing interest worldwide. Apart from its economic benefits, CLT takes full advantage of both the tensile strength parallel to the wood grain and its compressive strength perpendicular to the grain, which enhances the load bearing capacity of the composite. However, traditional CLT panels are made with glue, which can expire and lose effectiveness over time, compromising the CLT panel mechanical strength. To mitigate such shortcomings of conventional CLT panels, we pioneer herein nail-cross-laminated timber (NCLT) panels with more reliable connection system. This study investigates the flexural performance of NCLT panels made with different types of nails and explores the effects of key design parameters including the nail incidence angle, nail type, total number of nails, and number of layers. Results show that NCLT panels have better flexural performance than traditional CLT panels. The failure mode of NCLT panels depends on the nail angle, nail type, and quantity of nails. A modified formula for predicting the flexural bearing capacity of NCLT panels was proposed and proven accurate. The findings could blaze the trail for potential applications of NCLT panels as a sustainable and resilient construction composite for lightweight structures.
Online Access
Free
Resource Link
Less detail

Numerical Modelling of Steel-to-Timber Joints and Connectors for CLT Structures

https://research.thinkwood.com/en/permalink/catalogue1604
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Izzi, Matteo
Rinaldin, Giovanni
Fragiacomo, Massimo
Polastri, Andrea
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Strength
Shear Tests
Steel-to-Timber
Joints
Nails
Hysteretic Model
Stochastic Approach
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2032-2040
Summary
The mechanical behaviour of steel-to-timber joints with annular-ringed shank nails is investigated using numerical modelling and a component approach. These joints are used in Cross-Laminated Timber (CLT) buildings to anchor metal connectors such as hold-downs and angle brackets to the timber panels. At first, a general hysteresis model is introduced, where a single fastener joint is schematized as an elasto-plastic beam embedded in a non-linear medium with a compression-only behaviour. A second hysteresis model is then presented, where the mechanical behaviour of the joint is simulated by a non-linear spring with three degrees of freedom. Both models are calibrated on the design rules prescribed by the reference standards. Moreover, average strength capacities are determined from the corresponding characteristic values assuming a standard normal distribution and suitable coefficients of variation. As first applicative examples of the proposed models, shear tests are simulated on single steel-to-timber joints with annular-ringed shank nails and on a connection made of an angle bracket and sixty nails. The scatter of mechanical properties in steel-to-timber joints is also taken into account in the simulations and a stochastic approach is proposed, demonstrating acceptable accuracy.
Online Access
Free
Resource Link
Less detail

Response of Plywood-Coupled Post-Tensioned LVL Walls to Repeated Seismic Loading

https://research.thinkwood.com/en/permalink/catalogue1583
Year of Publication
2016
Topic
Connections
Mechanical Properties
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Iqbal, Asif
Pampanin, Stefano
Fragiacomo, Massimo
Buchanan, Andrew
Year of Publication
2016
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Connections
Mechanical Properties
Seismic
Keywords
Post-Tensioned
Quasi-Static
Cyclic Testing
Energy Dissipation
Nails
Cyclic Loading
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1807-1813
Summary
Laminated veneer lumber (LVL) structural members have recently been proposed for multi-storey timber buildings based on ongoing research at University of Canterbury, New Zealand. The members are designed with unbonded post-tensioning for recentering and energy dissipation through the ductile connections. This paper describes the experimental and numerical investigation of post-tensioned LVL walls coupled with plywood sheets, under quasistatic cyclic testing protocols. It is observed that energy is dissipated mostly through yielding of the nails, and the LVL walls return close to their initial position while remaining virtually undamaged. The same specimen has been tested under repeated cyclic loading to investigate the performance of the arrangement under more than one seismic event (a major earthquake followed by a significant aftershock). Different nail spacing and arrangements have been tested to compare their energy dissipation characteristics. The results indicate good seismic performance, characterized by negligible damage of the structural members and very small residual deformations. The only component significantly damaged is the nailed connection between the plywood sheet and the LVL walls. Although the nails yield and there is a reduction in stiffness the system exhibits a stable performance without any major degradation throughout the loading regime. The plywood can be easily removed and replaced with new sheets after an earthquake, which are reasonably cheap and easy to install, allowing for major reduction in downtime. With these additional benefits the concept has potential for consideration as an alternative solution for multi-storey timber buildings.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.