This study aims to present a multi-criteria decision analysis (MCDA) for comprehensive performance evaluation of the alternative design of timber–concrete composite (TCC) floor system. Considered objectives are serviceability and sustainability performance with associated criterion as (1) comfort class regarding springiness and vibrations, (2) architectural quality with associated criterion as open spaces, (3) environmental aspect with associated criterion as CO2 emissions and (4) cost aspect with associated criterion as the total costs. Analytical Hierarchy Process (AHP) and Complex Proportional Assessment (COPRAS) as the methods in the multi-criteria analysis have been combined for (1) determining the weighting of criteria based on the survey results, (2) verifying the consistency ratio of decision matrix made by experts and (3) for ranking and selecting the optimal concept design among design candidates. According to the results, the TCC floor with the span length of 7.3 m belonging to comfort class A has got the highest ranking. However, sensitivity analysis indicates that the TCC floor with a 9.0 m span length belonging to comfort class A shall be selected as the optimal concept design. The study contributes by developing a complete concept design tool for TCC floor systems using AHP combined COPRAS methods to handle both beneficial and non-beneficial criteria.
As woodworking and construction technologies improve, the construction of multi-storey timber buildings is gaining popularity worldwide. There is a need to look at the design of existing buildings and assess their sustainability. The aim of the present study is to assess the sustainability of modern high-rise timber buildings using multi-criteria assessment methods. The paper presents a hierarchical system of sustainability indicators and an assessment framework, developed by the authors. Based on this framework, the tallest timber buildings in different countries, i.e., Mjøstårnet in Norway, Brock Commons in Canada, Treet in Norway, Forte in Australia, Strandparken in Sweden and Stadthaus in UK, were compared across the three dimensions of sustainability (environmental, economic/technological, and social). Research has revealed that none of the buildings is leading in all dimensions of sustainability. However, each building is unique and has its own strengths. Overall multi-criteria assessment of the buildings revealed that the Brock Commons building in Canada has received the highest rank in all dimensions of sustainability. The paper contributes to the theory and practice of sustainability assessment and extends the knowledge about high-rise timber buildings. The proposed sustainability assessment framework can be used by both academics and practitioners for assessment of high-rise timber buildings.