Skip header and navigation

5 records – page 1 of 1.

Duration-Of-Load and Size Effects on the Rolling Shear Strength of Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue191
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Yuan
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Long-term
Mountain Pine Beetle
Short-term
Duration of Load
Rolling Shear Strength
Torque Loading Tests
Language
English
Research Status
Complete
Summary
In this study, the duration-of-load and size effects on the rolling shear strength of CLT manufactured from MPB-afflicted lumber were evaluated. The study of the duration-of-load effect on the strength properties of wood products is typically challenging; and, additional complexity exists with the duration-of-load effect on the rolling shear strength of CLT, given the necessary consideration of crosswise layups of wood boards, existing gaps and glue bonding between layers. In this research, short-term ramp loading tests and long-term trapezoidal fatigue loading tests (damage accumulation tests) were used to study the duration-of-load behaviour of the rolling shear strength of CLT. In the ramp loading test, three-layer CLT products showed a relatively lower rolling shear load-carrying capacity. Torque loading tests on CLT tubes were also performed. The finite element method was adopted to simulate the structural behaviour of CLT specimens. Evaluation of the rolling shear strength based on test data was discussed. The size effect on the rolling shear strength was investigated. The results suggest that the rolling shear duration-of-load strength adjustment factor for CLT is more severe than the general duration-ofload adjustment factor for lumber, and this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
Online Access
Free
Resource Link
Less detail

Duration-Of-Load Effect on the Rolling Shear Strength of Cross Laminated Timber: Duration-Of-Load Tests and Damage Accumulation Model

https://research.thinkwood.com/en/permalink/catalogue228
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Yuan
Lam, Frank
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Duration of Load
Long-term
Mountain Pine Beetle
Rolling Shear Strength
Stiffness
Strength
Stress Distribution
Language
English
Research Status
Complete
Summary
In this study, the duration-of-load (DOL) effect on the rolling shear strength of cross laminated timber (CLT) was evaluated. A stress-based damage accumulation model is chosen to evaluate the DOL effect on the rolling shear strength of CLT. This model incorporates the established short-term rolling shear strength of material and predicts the time to failure under arbitrary loading history. The model was calibrated and verified based on the test data from low cycle trapezoidal fatigue tests (the damage accumulation tests). The long-term rolling shear behaviour of CLT can then be evaluated from this verified model. As the developed damage accumulation model is a probabilistic model, it can be incorporated into a time-reliability study. Therefore, a reliability assessment of the CLT products was performed considering short-term and snow loading cases. The reliability analysis results and factors reflecting the DOL effect on the rolling shear strength of CLT are compared and discussed. The results suggest that the DOL rolling shear strength adjustment factor for CLT is more severe than the general DOL adjustment factor for lumber; and, this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
Online Access
Free
Resource Link
Less detail

Performance Evaluation of Phenol Formaldehyde Resin-Impregnated Veneers and Lamminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1444
Year of Publication
2012
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Wang, Brad
Chui, Ying Hei
Publisher
Society of Wood Science and Technology
Year of Publication
2012
Country of Publication
United States
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Mountain Pine Beetle
Lodgepole Pine
Resin Impregnation
Modulus of Elasticity
Phenol Formaldehyde
Dimensional Stability
Hardness
Bending Strength
Bending Modulus
Shear Strength
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
For the past decade, mountain pine beetle infestation in British Columbia, Canada, has substantially changed wood characteristics of vast amounts of the lodgepole pine (Pinus contorta) resource. Resin impregnation is one method that could improve the properties of the beetle-affected wood. The key objective of this study was to examine the impact of resin impregnation on dynamic MOE of lodgepole pine veneers and properties of laminated veneer lumber (LVL) made with these treated veneers. A new phenol formaldehyde resin was formulated to treat these veneers using dipping and vacuum-pressure methods. Five-ply LVL billets were made with treated and untreated veneers. Their color, dimensional stability, surface hardness, flatwise bending modulus and strength, and shear strength were evaluated. Good correlation existed between veneer MOE enhancement and resin solids uptake. With the same treatment, stained veneers had higher resin retention and in turn greater MOE enhancement than nonstained (clear) veneers. A 5-min dipping was sufficient for veneers to achieve approximately 7 and 10% resin solids uptake and in turn 5 and 8% enhancement in veneer MOE for nonstained and stained veneers, respectively. LVL made with treated veneers had a harder surface with no discoloration concerns compared with the control. Also, evidence suggested that use of resin impregnation can improve dimensional stability, shear strength, and flatwise bending MOE of LVL.
Online Access
Free
Resource Link
Less detail

Technical Note: Effects of Nanoclay Addition to Phenol-Formaldehyde Resin on the Permeability of Oriented Strand Lumber

https://research.thinkwood.com/en/permalink/catalogue1465
Year of Publication
2010
Topic
Connections
Material
OSL (Oriented Strand Lumber)
Author
Zhang, Chao
Smith, Gregory
Publisher
Society of Wood Science and Technology
Year of Publication
2010
Country of Publication
United States
Format
Journal Article
Material
OSL (Oriented Strand Lumber)
Topic
Connections
Keywords
Phenol Formaldehyde
Adhesives
Permeability
Nanoclays
Lodgepole Pine
Mountain Pine Beetle
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
This note examined the effects of adding nanoclays to phenol-formaldehyde resin during the manufacture of oriented strand lumber (OSL) on its in-plane permeability. The panels were made from mountain pine beetle (MPB) attacked lodgepole pine (Pinus contorta) strands. Three different montmorillonite nanoclays were mixed with the PF resin: Na+, hydrophobic organics modified 10A, and hydrophilic organics modified 30B. None of the nanoclays changed the permeability of OSL significantly. The MPB-OSL had higher in-plane permeability than those conventionally made from aspen, which indicated that the pressing time could be shorter for MPB-OSL compared with OSL made from MPB-free strands.
Online Access
Free
Resource Link
Less detail

Torque Loading Tests on the Rolling Shear Strength of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1416
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Lam, Frank
Li, Yuan
Li, Minghao
Publisher
Springer Japan
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Rolling Shear Strength
Polyurethane
Mountain Pine Beetle
Torque Loading Tests
Failure Modes
Monte Carlo
Finite Element Model
Brittle Failure
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
In this study , torque loading tests on small shear blocks were performed to evaluate the rolling shear strength of cross-laminated timber (CLT). The CLT plates in the tests were manufactured with Mountain Pine Beetle-afflicted lumber boards and glued with polyurethane adhesive; two types of layups (five-layer and three-layer) with a clamping pressure 0.4 MPa were studied. The small block specimens were sampled from full-size CLT plates and the cross layers were processed to have an annular cross section. These specimens were tested under torque loading until brittle shear failure occurred in the middle cross layers. Based on the test results, the brittle shear failure in the specimens was evaluated by detailed finite element models to confirm the observed failure mode was rolling shear. Furthermore, a Monte Carlo simulation procedure was performed to investigate the occurrence probability of different shear failure modes in the tests considering the randomness of the rolling shear strength and longitudinal shear strength properties in the wood material. The result also suggested the probability of rolling shear failure is very high, which gives more confident proof that the specimens failed dominantly in rolling shear. It was also found that the torque loading test method yielded different rolling shear strength values compared to the previous research from short-span beam bending tests; such a difference may mainly be due to the different stressed volumes of material under different testing methods, which can be further investigated using the size effect theory in the future.
Online Access
Free
Resource Link
Less detail