Skip header and navigation

6 records – page 1 of 1.

Effects of Climate Change on the Moisture Performance of Tallwood Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2771
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Author
Defo, Maurice
Lacasse, Michael
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Topic
Moisture
Keywords
Climate Change
Hygrothermal Simulations
Moisture Performance
Durability
Mold Growth Risk
Language
English
Research Status
Complete
Series
Buildings
Summary
The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of massive timber walls on the basis of results derived from hygrothermal simulations. One-dimensional simulations were run using DELPHIN 5.9.4 for 31 consecutive years of the 15 realizations of the modeled historical (1986–2016) and future (2062–2092) climates of five cities located across Canada. For all cities, water penetration in the wall assembly was assumed to be 1% wind-driven rain, and the air changes per hour in the drainage cavity was assumed to be 10. The mold growth index on the outer layer of the cross-laminated timber panel was used to compare the moisture performance for the historical and future periods. The simulation results showed that the risk of mold growth would increase in all the cities considered. However, the relative change varied from city to city. In the cities of Ottawa, Calgary and Winnipeg, the relative change in the mold growth index was higher than in the cities of Vancouver and St. John’s. For Vancouver and St. John’s, and under the assumptions used for these simulations, the risk was already higher under the historical period. This means that the mass timber walls in these two cities could not withstand a water penetration rate of 1% wind-driven rain, as used in the simulations, with a drainage cavity of 19 mm and an air changes per hour value of 10. Additional wall designs will be explored in respect to the moisture performance, and the results of these studies will be reported in a future publication. View Full-Text
Online Access
Free
Resource Link
Less detail

Hygrothermal Analysis of Timber-Based External Walls Across Different Australian Climate Zones

https://research.thinkwood.com/en/permalink/catalogue2071
Year of Publication
2018
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls

Hygrothermal Performance Of Highly Insulated Wood Frame Walls With Air Leakage: Field Measurements And Simulations

https://research.thinkwood.com/en/permalink/catalogue2316
Year of Publication
2014
Topic
Moisture
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls

Impact of Air-Gap Design to Hygro-thermal Properties and Mould Growth Risk Between Concrete Foundation and CLT Frame

https://research.thinkwood.com/en/permalink/catalogue1327
Year of Publication
2017
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Fedorik, Filip
Haapala, Antti
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Moisture
Keywords
Hygrothermal
Mould
Concrete
Multi-Storey
Moisture Content
Airflow
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
The presented work deals with hygro-thermal numerical simulation and mould growth risk evaluation between concrete foundation and frame of multi-story building made of CLT element modules. Structural CLT modules represent an approach towards wood material utilization in construction as its strength achieves markedly higher values then common structural wooden elements and makes rapid erection of the building possible. Although there are great promises that the novel CLT structures will gain ground in high-rise buildings market with apparent benefits in sustainability and inhabitant comments regarding ambience and acoustics, it is important to analyse their structural health and hygro-thermal conditions. The highest risk of unfavourable hygro-thermal conditions is usually presented in location characterized by thermal bridge, such as foundation, window-wall, wall-roof and wall-floor junctions. It is also of significant importance to analyse junctions between materials, whether wood, composite, mortar or concrete. A certain combination of thermal and humidity conditions in exposed time causes mould growth initiation that may lead to deterioration of structural material and unhealthy indoor environment. In this case study, the moisture content and air-flow in the junction and open space in structural design details between the first floor (of concrete) housing joint warehouse and technical spaces and the residential upper floors made of CLT modules is analysed. Conditions leading to probable moisture-derived mould issues and design parameters leading to sufficient ventilation according to Mould Index modelling are presented.
Online Access
Free
Resource Link
Less detail

Influence of Interior Layer Properties to Moisture Dry-out of CLT Walls

https://research.thinkwood.com/en/permalink/catalogue2521
Year of Publication
2019
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kukk, Villu
Külaots, Annegrete
Kers, Jaan
Kalamees, Targo
Publisher
University of Toronto
Year of Publication
2019
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Moisture
Keywords
Mould Growth Risk
Built-in Moisture
Interior Insulation
Language
English
Research Status
Complete
Series
Canadian Journal of Civil Engineering
Online Access
Free
Resource Link
Less detail

Moisture Response of Wall Assemblies of Cross-Laminated Timber Construction in Cold Canadian Climates

https://research.thinkwood.com/en/permalink/catalogue143
Year of Publication
2012
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Lepage, Robert
Organization
University of Waterloo
Year of Publication
2012
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Serviceability
Moisture
Keywords
Canada
Climate
Decay
Durability
Hem-Fir
Hygrothermal
Mold
Relative Humidity
Rot
Simulation
SPF
Water Vapour Permeability
Language
English
Research Status
Complete
Summary
Wood is a highly versatile renewable material (with carbon sequestering properties), that is light in weight, has good strength properties in both tension and compression while providing good rigidity and toughness, and good insulating properties (relative to typical structural materials). Engineered wood products combine the benefits of wood with engineering knowledge to create optimized structural elements. Cross-laminated timber (CLT), as one such engineered wood product, is an emerging engineering material which provides great opportunities for the building industry. While building with wood has many benefits, there are also some concerns, particularly decay. Should wood be exposed to elevated amounts of moisture, rots and moulds may damage the product or even risk the health of the occupants. As CLT panels are a relatively new engineered wood product, the moisture characteristics have yet to be properly assessed.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.