Skip header and navigation

11 records – page 1 of 2.

Bending Strength of Cross Laminated Timber Beams Loaded In Plane

https://research.thinkwood.com/en/permalink/catalogue28
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Blaß, Hans Joachim
Flaig, Marcus
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Strength
Monte Carlo Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
: A computer aided numerical model for the simulation of the in-plane bending strength of CLT beams is presented. The model uses the Monte-Carlo-Method to generate mechanical characteristics of board lamellae and is suitable for the investigation of statistical effects such as homogenisation and size effects. Six different types of CLT beams, varying in size and in layup, were tested to validate the model and except for beams with only one lamella in direction of the beam height good agreement was found between the experimental results and the model’s simulations.
Online Access
Free
Resource Link
Less detail

Compressive Strength of Cross-Laminated Timber Panel

https://research.thinkwood.com/en/permalink/catalogue280
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Oh, Jung-Kwon
Hong, Jung-Pyo
Lee, Junjae
Year of Publication
2014
Country of Publication
Slovakia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Compression Strength
Mid-Rise
Vertical Bearing Load
Monte Carlo
Language
English
Conference
International Convention of Society of Wood Science and Technology
Research Status
Complete
Notes
June 23-27, 2014, Zvolen, Slovakia, p.761-768
Summary
The mission of the Hardwood Scanning Center at Purdue University is to increase the global competitiveness of the United States hardwood industry and to conserve the hardwood resource by development of manufacturing technologies which will enable hardwood industry to “see inside a tree” and use this information to make better processing decisions. The Hardwood Scanning Center partnered with Microtek, GmbH of Italy in the development of an industrial grade log CT scanner. World’s first three industrial CT log scanners have been installed in last 12 months in mills around the world and we will briefly discuss their application. The Hardwood Scanning Center also developed visualization and optimization software for the hardwood veneer and sawmill operations. This presentation will provide an overview of state-of-the-art in CT scanning of logs.
Online Access
Free
Resource Link
Less detail

Design of Timber Members Subjected to Axial Compression or Combined Axial Compression and Bending Based on 2nd Order Theory

https://research.thinkwood.com/en/permalink/catalogue115
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Frangi, Andrea
Steiger, René
Theiler, Matthias
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Germany
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Design and Systems
Mechanical Properties
Keywords
Bending
Buckling
Codes
Compression
Deformation
Monte Carlo
Simulation
Structural
Testing
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Sibenik, Croatia
Summary
The paper examines the behaviour of structural timber members subjected to axial compression or combined axial compression and bending. Based on experimental and numerical investigations, the accuracy of the existing approach in Eurocode 5 for the design of timber members subjected to axial compression or combined axial compression and bending is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created for the validation of calculation models and for the assessment of design concepts. In order to assess the behaviour of timber members subjected to axial compression or combined axial compression and bending, strain-based calculation models were developed. The investigations indicate that the existing approach of Eurocode 5 based on 2nd order analysis can lead to an overestimation of the load-bearing capacity. Hence, a modified design approach was developed which agrees with the results of the Monte Carlo simulations very well and thus ensures a safe and economical design of timber members subjected to compression or combined compression and bending.
Online Access
Free
Resource Link
Less detail

Estimation of Bending Stiffness, Moment Carrying Capacity and Internal Shear Force of Sugi CLT Panel

https://research.thinkwood.com/en/permalink/catalogue622
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Okabe, Minoru
Yasumura, Motoi
Kobayashi, Kenji
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Keywords
Internal Shear Strength
Bending Strength
Moment Carrying Capacity
Monte Carlo
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
CLT panels consist of several layers of lumber stacked crosswise and glued together on their faces. Prototype Sugi CLT floor panels were manufactured and bending and internal shear tests were carried out under the different parameters of lumber MOE, number of layers, thickness of lumber and thickness of CLT panels. On the basis of above tests, internal shear strength, bending stiffness and moment carrying capacity were estimated based on the lumber properties by Monte Carlo method. Bending stiffness EI of CLT panels could be estimated by adopting parallel layer theory and equivalent section area. Experimental moment carrying capacity showed 12% higher value than the calculated moment carrying capacity by average lumber failure method, and also showed 45% higher value than the calculated moment carrying capacity by minimum lumber failure method due to the reinforcement of the outer layer by the neighboring cross layer. Experimental internal shear force of CLT panel showed 30% higher value than the calculated one.
Online Access
Free
Resource Link
Less detail

Prediction of Bending Stiffness and Moment Carrying Capacity of Sugi Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue604
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Okabe, Minoru
Yasumura, Motoi
Kobayashi, Kenji
Fujita, Kazuhiko
Publisher
Springer Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Keywords
Bending Stiffness
Moment Carrying Capacity
Monte Carlo
Modulus of Elasticity
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
Cross-laminated timber (CLT) panels consist of several layers of lumber stacked crosswise and glued together on their faces. Prototype sugi CLT floor panels were manufactured and bending tests were carried out under the different parameters of lumber modulus of elasticity (MOE), number of layers, thickness of lumber and thickness of CLT panels. On the basis of above tests, bending stiffness and moment carrying capacity were predicted by Monte Carlo method. MOE of lumber was measured by using grading machine and tensile strength of lumber was assumed to be 60 % of bending strength based on the obtained bending test. Bending stiffness EI of CLT panels could be estimated by adopting composite theory and equivalent section area. Experimental moment carrying capacity showed 12 % higher value than the calculated moment carrying capacity by average lumber failure method, and also showed 45 % higher value than the calculated moment carrying capacity by minimum lumber failure method due to the reinforcement of the outer layer by the neighboring cross layer.
Online Access
Free
Resource Link
Less detail

Prediction of Compressive Strength of Cross-Laminated Timber Panel

https://research.thinkwood.com/en/permalink/catalogue517
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Oh, Jung-Kwon
Lee, Jun-Jae
Hong, Jung-Pyo
Publisher
Springer Japan
Year of Publication
2015
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Lamina
Monte Carlo
Compressive Strength
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
Compressive strength of cross-laminated timber (CLT) is one of the important mechanical properties which should be considered especially in design of mid-rise CLT building because it works to resist a vertical bearing load from the upper storeys. The CLT panel can be manufactured in various combinations of the grade and dimension of lamina. This leads to the fact that an experimental approach to evaluate the strength of CLT would be expensive and time-demanding. In this paper, lamina property-based models for predicting the compressive strength of CLT panel was studied. A Monte Carlo simulation was applied for the model prediction. A set of experimental compression tests on CLT panel (short column) was conducted to validate the model and it shows good results. Using this model, the influence of the lamina’s width on the CLT compressive strength was investigated. It reveals that the CLT compressive strength increases with the increase in the number of lamina. It was thought that repetitive member effect (or dispersion effect) is applicable for the CLT panel, which was explained by the decrease of the variation in strength. This dependency of the number of lamina needs further study in development of reference design values, CLT wall design and CLT manufacturing.
Online Access
Free
Resource Link
Less detail

Reassessment of the Integrity of a Partially Failed Glulam Structure

https://research.thinkwood.com/en/permalink/catalogue128
Year of Publication
2014
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Roofs

Stability of Axial Pressure-Stressed Components Made of Solid Wood and Glulam

https://research.thinkwood.com/en/permalink/catalogue1141
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Author
Theiler, Matthias
Organization
ETH Zurich
Year of Publication
2014
Country of Publication
Switzerland
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Topic
Mechanical Properties
Keywords
Axial Compression
Bending
Monte Carlo
Load Bearing Capacity
Language
German
Research Status
Complete
Summary
This thesis examines the behaviour of structural timber members subjected to compression alone or in combination with bending. Based on experimental and numerical investigations, the knowledge on the behaviour of these timber members is extended and advanced calculation models are developed. In addition, the accuracy of existing approaches for the design of these members is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created which can be used for the validation of calculation models and for the assessment of design concepts. The experimental investigations are carried out on eccentrically loaded compression members made of glued laminated timber. Different parameters such as the strength class of the glued laminated timber or the slenderness ratio of the members are investigated.
Online Access
Free
Resource Link
Less detail

Structural Behaviour of Glued Laminated Timber Beams with Unreinforced and Reinforced Notches

https://research.thinkwood.com/en/permalink/catalogue311
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Jockwer, Robert
Organization
ETH Zurich
Year of Publication
2014
Country of Publication
Switzerland
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Finite Element Model
Load Carrying Capacity
notch
Monte Carlo
Failure Behavior
Language
English
Research Status
Complete
Summary
In this thesis the reliability of the design of unreinforced notched beams is evaluated and recommendations for the design of reinforced notched beams are given. The review of design approaches for reinforced notched beams shows, that so far the reinforcement is designed only with regard to the perpendicular to grain force acting in the notch corner. The evaluation of test results from literature shows that a stiff reinforcement has the best reinforcing effect but initial cracking cannot be prevented. The failure behaviour of the reinforced notch is studied in more detail by means of experiments and a FE model. Initial cracking of the reinforced notch comes along with crack opening, whereas ultimate failure with excessive crack growth is accompanied by shearing of the crack. An analytical model is presented for the description of the structural behaviour of reinforced notched beams. The parallel and perpendicular to the grain stiffness of the reinforcement is accounted for in the model. A high stiffness of the reinforcement parallel to the grain is required in order to reduce the mode 1 loading of the notch corner and to prevent initial cracking. The mode 2 loading of the crack increases with increasing crack length. In order to achieve higher load-carrying capacities for notched beams with longer cracks, reinforcement with high stiffness parallel to the grain is required. Recommendations are given for the required reinforcement of notched beams in order to restore the shear capacity of the reduced cross-section.
Online Access
Free
Resource Link
Less detail

Structural Reliability Analysis of Cross Laminated Timber Plates Subjected to Bending

https://research.thinkwood.com/en/permalink/catalogue2713
Year of Publication
2020
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Vilela, Ramon
Mascia, Nilson
Santos, Luciano
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bending
Structural Reliability
Monte Carlo Simulation
Failure Mode
Probability of Failure
Load Capacity
Four Point Bending Test
Language
English
Conference
Society of Wood Science and Technology International Convention
Research Status
Complete
Summary
Failure modes of Cross Laminated Timber (CLT) plates reach by an excess of tensile stress on finger joints, shear stress on transverse layer due to rolling shear effect and by natural vibration. The Probability of Failure (POF) of CLT plates can be estimated from the probability distribution of their ruptures and stiffnesses, as well as their correlation coefficients. In this context, the aim of this paper is to estimate the load capacity of Cross Laminated Timber plates from a specific probability of failure and the experimental results of mechanical and physical properties. For this purpose, CLT plates were manufactured with wood species of Pinus taeda L., from Brazilian reforestation plantations. Four-point bending tests were conducted to investigate the failure behavior of the CLT plates. Density and moisture content were obtained from small specimens extracted from these plates. Monte Carlo simulation was carried out to predict the probabilistic loads that produce the failure of CLT plates, considering the failure occasioned by natural vibration as well. Experimental and numerical results of the failure modes were compared and the maximum loads to an acceptable probability of failure of the several CLT lengths were estimated too.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.