Skip header and navigation

4 records – page 1 of 1.

Behavior of Interlocking Cross-Laminated Timber (ICLT) Shear Walls

https://research.thinkwood.com/en/permalink/catalogue240
Year of Publication
2011
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Experimental Investigation of Connection for the FFTT, A Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue269
Year of Publication
2013
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Numerical and Experimental Investigations of Connection for Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue213
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Perforated Plate Testing

https://research.thinkwood.com/en/permalink/catalogue2647
Topic
Seismic
Design and Systems
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Organization
Fast + Epp
Country of Publication
Canada
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Connections
Keywords
Braced Frames
Dissipation
Cyclic Tests
Monotonic Test
Language
English
Research Status
In Progress
Summary
As part of Fast + Epp’s ongoing work to push the boundaries of Tall Wood construction in seismic zones, this testing program aims to develop a new dissipative system for use in timber braced frames or other timber lateral systems where the connections provide energy dissipation. The connections are designed to dissipate energy through ductile steel plates to provide robust and well understood dissipative systems. In collaboration with the Advanced Research in Timber Systems’ team at the University of Alberta, Fast + Epp is working on a four-phase testing program for cyclic and monotonic testing of various configurations of perforated plate connections. Small scale tests have been completed on perforated plates, and entire connections will be examined in advance of a full-scale timber brace frame test to evaluate the overall behaviour. One phase of physical testing was completed in January 2020, with the next 3 phases intended to be completed in 2021. Initial data analysis of the first phase testing has resulted in tuning of the system in advance of later phase testing. Results on the first two or three phases of testing are anticipated to be completed in 2020 with initial publication of the results in early 2021.
Resource Link
Less detail