In wood-frame buildings of three or more stories, cumulative shrinkage can be significant and have an impact on the function and performance of finishes, openings, mechanical/electrical/plumbing (MEP) systems, and structural connections. However, as more designers look to wood-frame construction to improve the cost and sustainability of their mid-rise projects, many have learned that accommodating wood shrinkage is actually very straightforward. This publication will describe procedures for estimating wood shrinkage and provide detailing options that minimize its effects on building performance.
The advantages of the two different building construction materials, timber and concrete, can be used effectively in adhesive-bonded timber-concrete composite constructions. The long-term behavior was investigated experimentally on small-scale shear and bond specimens under artificial, alternating climatic conditions and on fullscale specimens under natural climatic conditions for an application in construction practice. The development of the shear strength and the deformation behavior under permanent loads were studied, focusing on the different material behavior of wood and concrete regarding changes in temperature and moisture. The general applicability of adhesivebonded timber-concrete composites in construction practice was proved in the investigations.
When Adidas announced plans for a two-building expansion of their North American headquarters, speed and budget were key criteria. They wanted a campus that reflected their culture and commitment to quality, authenticity and innovation, but had a strict 24-month deadline. In response, the design and construction team chose a hybrid of precast concrete and mass timber for one building, and a mass timber post-and-beam solution for the other, using prefabrication to reduce the construction schedule by more than three months.
Wood preservation is an important issue for agricultural buildings with timber structure. This is among others due to their halfway opened construction, high level of moisture release from livestock breeding or storing goods. However, regarding the possibly high moisture content in the building structure and the potential threat caused by wood-destroying organisms, there is still a substantial need for research. The latest results of the research work carried out by Technical University of Munich, in cooperation with the Bavarian State Research Center for Agriculture, show that, for the most agricultural buildings built from spruce, no preventative chemical wood preservation is necessary to ensure a durable construction.
The growing timber manufacturing industry faces challenges due to increasing geometric complexity of architectural designs. Complex and structurally efficient curved geometries are nowadays easily designed but still involve intensive manufacturing and excessive machining. We propose an efficient form-giving mechanism for large-scale curved mass timber by using bilayered wood structures capable of self-shaping by moisture content changes. The challenge lies in the requirement of profound material knowledge for analysis and prediction of the deformation in function of setup and boundary conditions. Using time- and moisture-dependent mechanical simulations, we demonstrate the contributions of different wood-specific deformation mechanisms on the self-shaping of large-scale elements. Our results outline how to address problems such as shape prediction, sharp moisture gradients, and natural variability in material parameters in light of an efficient industrial manufacturing.
Recent research in the field of assessment of hygrothermal response has focused on either laboratory experimentation or modelling, but less work has been reported in which both aspects are combined. Such type of studies can potentially offer useful information regarding the benchmarking of models and related methods to assess hygrothermal performance of wall assemblies.
This report documents the experimental results of a benchmark experiment that was designed to allow benchmarking of stud drying predicted by NRC’s an advanced hygrothermal computer model called hygIRC, when subjected to nominally steady-state environmental conditions. hygIRC uses hygrothermal properties of materials derived from tests on small-scale specimens undertaken in the laboratory. The drying rates of wall assembly featuring wet studs that result from moisture accumulated during the framing stage of a 5 or 6 storey building. The drying rate of those studs was assessed in an experiment undertaken in a controlled laboratory setting. The results were subsequently used to help benchmark hygIRC reported under separate cover.
Through long-term measurements of climate data (temperature, relative humidity) and timber moisture content on large-span timber structures in buildings of typical construction type and use, data sets were generated which deliver information on the sequence and magnitude of seasonal variations. The measurement of moisture in different depths of the cross-section is of particular interest to draw conclusions on the size and speed of adjustment of the moisture distribution to changing climatic conditions. The moisture gradient has direct influence on the size of the internal stresses and possible damage potential. Similarly, the results provide a review and extension of the previous classification of buildings into use classes. They allow for a more precise indication of range of resulting equilibrium moisture content for the specific use, enabling the installation of timber elements with adjusted moisture content. The results of the research project also support the development of appropriate monitoring systems, which could be used in the form of early warning systems based on climate measurements
Characteristics of the Radio-Frequency/Vacuum Drying of Heavy Timbers for Post and Beam of Korean Style Housings Part II: For Korean Red Pine Heavy Timbers with 250 × 250 mm, 300 × 300 mm in Cross Section and 300 mm in Diameter, and 3,600 mm in Length
This study examined the characteristics of radio-frequency/vacuum dried Korean red pine (Pinus densoflora heavy timbers with 250 × 250 mm (S), 300 × 300 mm (L) in cross section and 300 mm in diameter, and 3,600 mm in length, which were subjected to compressive loading after a kerf pretreatment. The following results were obtained : The drying time was short and the drying rate was high in spite of the large cross section of specimens. The moisture gradient inall specimens was gentle in both longitudinal and transverse directions owing to dielectric heating. The shrinkage of the width in the direction perpendicular to was 21 percent ~ 76 percent of that of the thickness of square timbers in the direction parallel to the mechanical pressure. The casehardening for all specimens was very slight because of significantly reduced ratio of the tangential to radial shrinkage of specimens and kerfing. The surface checks somewhat severely occurred although the occurrence extent of the surface checks on the kerfed specimens was slight compared withthat on the control specimen.
Structural changes like deformations and crack growth in polymers, filled with electrically conductive particles can be measured by resistography. Accordingly, the polymeric adhesive layers in glued-laminated timber should be usable for characterization of the wooden structures and the integrity of the bondline. The described research of the last years – partly described on different conferences in 2012 to 2016, refined and extended - addresses the question, if electrically conductive adhesives can be used to characterize structural changes of wooden structures. Electrical conductive adhesives have been modified with carbon based fillers to use the bondline as a sensor in layered wood structures. Laboratory scaled samples were prepared and tested in different load and climate conditions to proof the usability of the conductive adhesive for measurement purposes. The results are showing a correlation between displacement and DC resistivity. Further, the signals also allow a separation among the different kinds of stress states. By varying the contact points of the resistivity measurement it was also possible to monitor the wood moisture.