Skip header and navigation

8 records – page 1 of 1.

Climate Effects of Forestry and Substitution of Concrete Buildings and Fossil Energy

https://research.thinkwood.com/en/permalink/catalogue2774
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Gustavsson, L.
Nguyen, T.
Sathre, Roger
Tettey, U.Y.A.
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Climate Change
Modular Construction
Carbon Emissions
Forest Management
Language
English
Research Status
Complete
Series
Renewable and Sustainable Energy Reviews
Summary
Forests can help mitigate climate change in different ways, such as by storing carbon in forest ecosystems, and by producing a renewable supply of material and energy products. We analyse the climate implications of different scenarios for forestry, bioenergy and wood construction. We consider three main forestry scenarios for Kronoberg County in Sweden, over a 201-year period. The Business-as-usual scenario mirrors today's forestry while in the Production scenario the forest productivity is increased by 40% through more intensive forestry. In the Set-aside scenario 50% of forest land is set-aside for conservation. The Production scenario results in less net carbon dioxide emissions and cumulative radiative forcing compared to the other scenarios, after an initial period of 30–35 years during which the Set-aside scenario has less emissions. In the end of the analysed period, the Production scenario yields strong emission reductions, about ten times greater than the initial reduction in the Set-aside scenario. Also, the Set-aside scenario has higher emissions than Business-as-usual after about 80 years. Increasing the harvest level of slash and stumps results in climate benefits, due to replacement of more fossil fuel. Greatest emission reduction is achieved when biomass replaces coal, and when modular timber buildings are used. In the long run, active forestry with high harvest and efficient utilisation of biomass for replacement of carbon-intensive non-wood products and fuels provides significant climate mitigation, in contrast to setting aside forest land to store more carbon in the forest and reduce the harvest of biomass.
Online Access
Free
Resource Link
Less detail

Decision-Making for Cross-Laminated Timber Modular Construction Logistics Using Discrete-Event Simulation

https://research.thinkwood.com/en/permalink/catalogue2722
Year of Publication
2020
Topic
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Abiri, Bahar
Publisher
Oregon State University
Year of Publication
2020
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Site Construction Management
Keywords
Modular Construction
Discrete-Event Simulation
Language
English
Research Status
Complete
Summary
The two primary considerations for construction project management are budget and time management. Modular construction has the potential to improve construction productivity by minimizing time and costs while improving safety and quality. Cross-Laminated Timber (CLT) panels are beneficial for modular construction due to the high level of prefabrication, adequate dimensional stability, and good mechanical performance that they provide. Accordingly, CLT modular construction can be a feasible way to speed up the construction and provide affordable housing. However, an in-depth study is needed to streamline the logistics of CLT modular construction supply chain management. CLT modular construction can be performed by two primary means based on type of modules produced: panelized (2D) and volumetric (3D). This research aims to help the Architecture, Engineering, and Construction (AEC) industry by developing a tool to assess the impact of various logistical factors on both panelized and volumetric modular construction productivity. Discrete-Event Simulation (DES) models were developed for panelized and volumetric CLT modular construction based on a hypothetical case study and using data collected from superintendents and project managers. Sensitivity analysis is conducted using the developed models to explore the impact of selected manufacturing and logistical parameters on overall construction efficiency. Comparing volumetric and panelized simulations with the same number of off-site crews revealed that the volumetric model has lower on-site process duration while the off-site process is significantly longer. Accordingly, from manufacturing to the final module assembly, the total time for the volumetric model is longer than panelized model. Moreover, the simulations showed that volumetric modular construction is associated with less personnel cost since the main process is performed off-site, which has lower labor costs and a smaller number of crews required on-site. This framework could be used to identify the optimum construction process for reducing the time and cost of the project and aid in decision-making regarding the scale of modularity to be employed for project.
Online Access
Free
Resource Link
Less detail

Deconstructable Hybrid Connections for the Next Generation of Mass Timber Prefabricated Buildings

https://research.thinkwood.com/en/permalink/catalogue2551
Topic
Connections
Application
Hybrid Building Systems
Country of Publication
Canada
Application
Hybrid Building Systems
Topic
Connections
Keywords
Deconstructable Connections
Prefabrication
Modular Construction
Reuse
Seismic Resistance
Research Status
In Progress
Notes
Project contact is Cristiano Loss at the University of British Columbia
Summary
This research aims at developing novel multi-material deconstructable hybrid connections for mass timber prefabricated buildings. Connections will be conceived in order to (i) meet multi-objective structural performance, (ii) favour modular construction, (iii) favour quick erection of buildings, (iv) quick disassemble and possible reuse of the timber members, and (v) provide seismic-resistant structural assemblies.
Less detail

Development of Modular Wooden Buildings with Focus on the Indoor Environmental Quality

https://research.thinkwood.com/en/permalink/catalogue881
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Beikircher, Wilfried
Zingerle, Philipp
Flach, Michael
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Indoor Air Quality
Indoor Climate
Modular Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Online Access
Free
Resource Link
Less detail

Innovative Technology for Mass Timber and Hybrid Modular Buildings

https://research.thinkwood.com/en/permalink/catalogue2801
Topic
Design and Systems
Seismic
Wind
Connections
Application
Wood Building Systems
Hybrid Building Systems
Organization
Oregon State University
Country of Publication
United States
Application
Wood Building Systems
Hybrid Building Systems
Topic
Design and Systems
Seismic
Wind
Connections
Keywords
Mass Timber
Modular Construction
Ductility
Overstrength
High-Rise
Tall Wood Buildings
Interdisciplinary Research
Wind Tunnel Test
Research Status
In Progress
Notes
Project contact is Erica Fischer at Oregon State University
Summary
This Faculty Early Career Development (CAREER) award will create innovative building technology that will enable mass timber modular construction as a building solution to many of the issues the nation's major cities face today. The architecture, engineering, and construction (AEC) sector is on the cusp of a significant disruption that will change the way buildings are manufactured, assembled, and designed, the catalyst of which is the integration of building information models (BIM) and automated construction and manufacturing. This disruption will significantly impact structural engineers. With the streamlining of building manufacturing, assembling, and design, engineers will need to take advantage of three opportunities: (1) design for constructability, (2) design for manufacturing, and (3) design for the whole life of the building (considering future modifications, maintenance, and easily replacing parts of the building). Modular construction, as one method to take advantage of these three opportunities, can address labor and housing shortages that exist in almost every U.S. city today and also can provide rapid construction methods for post-disaster reconstruction and additional patient care facilities. This research will contribute to the state of Oregon’s economy, which has made significant investments in mass timber production, manufacturing, and research. This research will be complemented through the development of best practices for using interdisciplinary, collaborative classroom environments to enhance engineering identities of underrepresented minorities and women at the graduate level. This award will support the National Science Foundation (NSF) role in the National Earthquake Hazards Reduction Program and the National Windstorm Impact Reduction Program. The specific goal of this research is to develop a novel framework for robust and ductile mass timber modular construction that can be applied to buildings with varying lateral force resisting systems. Through this framework, the relationship between the rigidity of modular interconnections and overall structural behavior will be investigated. The research objectives of this project are to: (1) quantify the demands in interconnections that provide ductility when the building framing is subjected to combined gravity and lateral forces (seismic and wind); (2) quantify the impact of interconnection configuration and design on the ability of interconnections to meet the strength and serviceability performance criteria for mass timber high-rise modular buildings; (3) quantify ductility and overstrength for mass timber modular construction and explore applicability of conventional seismic performance factors and how these factors influence the adjusted collapse margin ratio for archetype buildings; (4) explore the influence of interconnection stiffness on the behavior of high-rise modular mass timber buildings subjected to wind demands; and (5) explore the relationship between team-focused and interdisciplinary educational practices with engineering identity and knowledge retention. New connection technology will be created and its contribution to the overall building behavior will be investigated through a rigorous testing plan and complex physics-based numerical simulations of archetype buildings subjected to combined gravity and lateral loads (seismic and wind). This research is a critical first step to develop innovative technology that will change how buildings are designed, manufactured, and assembled. This project will enable the Principal Investigator to establish interdisciplinary research, teaching, and mentorship in the area of mass timber and hybrid construction. This research will use the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) Boundary Layer Wind Tunnel facility at the University of Florida. Experimental datasets will be archived in the NHERI Data Depot (https://www.DesignSafe-ci.org) and made publicly available.
Resource Link
Less detail

Mass Timber in High-Rise Buildings: Modular Design and Construction

https://research.thinkwood.com/en/permalink/catalogue2390
Year of Publication
2019
Topic
Design and Systems
Fire
Application
Wood Building Systems
Author
Dorrah, Dalia
Publisher
Sidewalk Labs Toronto
Year of Publication
2019
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Modularization
Fire Safety
Construction Risks
Case Study
Modular Construction
Challenges
Language
English
Research Status
Complete
Summary
The costs of mass timber may be higher, but the added premium on their prices make them economically feasible. Beyond the economics, mass timber structures present a unique opportunity to develop and test the resiliency of the owner organization and its capacity to innovate. A collective effort to strengthen the supply chain in Ontario (especially the manufacturing stage) is one of the key tools to reduce costs. Having a dedicated fire consulting firm and the early engagement of regulatory bodies and consecrators are some of the key means to control risks in this domain. Earlier projects relied on covering/insulating mass timber sections to achieve the required fire requirements. Increasingly, charring is becoming an acceptable means for fire protection. Using Integrated Project Delivery system (IPD) and Building Information Modeling (BIM) can provide the contractual and technical platforms to boost coordination and promote collaborative design and construction.
Online Access
Free
Resource Link
Less detail

Mass Timber in High-Rise Buildings: Modular Design and Construction; Permitting and Contracting Issues

https://research.thinkwood.com/en/permalink/catalogue2144
Year of Publication
2019
Topic
Market and Adoption
Application
Wood Building Systems
Author
Dorrah, Dalia
El-Diraby, Tamer
Year of Publication
2019
Country of Publication
Canada
Format
Conference Paper
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Modular Construction
Building Codes
Language
English
Conference
Modular and Offsite Construction Summit
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Modular Timber Concrete Composite System for Short Span Highway Bridges

https://research.thinkwood.com/en/permalink/catalogue2297
Year of Publication
2019
Topic
Design and Systems
Connections
Material
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Liang, Yi
Publisher
University of Toronto
Year of Publication
2019
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Connections
Keywords
Modular Construction
Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)
Self-Tapping Screws
Canadian Highway Bridge Design Code
Language
English
Research Status
Complete
Summary
An innovative concept for a modular timber concrete composite system for short span highway bridges has been designed and key components experimentally validated. The proposed system consists of a Ultra-High Performance Fibre Reinforced Concrete(UHPFRC) deck and glue-laminated timer (glulam) girders linked to act compositely together by reinforcing steel bar shear connectors. This composite system has light, stable modules that can be rapidly constructed on site with less special equipment. Simple design checks indicate that the concept satisfies all serviceability limit state(SLS) and ultimate limit state(ULS) requirements of the Canadian Highway Bridge Design Code. Pull-out tests characterized the embedment lengths of 20M steel bar connectors to be 10 bar-diameters in UHPFRC. Push-off tests determined the embedment lengths of the same bars to be 30 bar-diameters glued into the timber girders. The slip modulus of the connectors is determined to be 67 kN/mm. The stiffness of the crosswise self-tapping screw connectors were tested and found to be structurally insignificant in this application. The excellent tensile and cracking properties of the reinforced UHPFRC deck was experimentally verified. A small amount of reinforcement would further improve the ductility of the UPHFRC deck system.
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.