Skip header and navigation

2 records – page 1 of 1.

Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures

https://research.thinkwood.com/en/permalink/catalogue3367
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Hart, Jim
D'Amico, Bernardino
Pomponi, Francesco
Organization
Edinburgh Napier University
Publisher
Wiley Online Library
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Embodied Carbon
Life Cycle Assessment
Material efficiency
Research Status
Complete
Series
Journal of Industrial Ecology
Summary
Buildings and the construction industry are top contributors to climate change, and structures account for the largest share of the upfront greenhouse gas emissions. While a body of research exists into such emissions, a systematic comparison of multiple building structures in steel, concrete, and timber alternatives is missing. In this article, comparisons are made between mass and whole-life embodied carbon (WLEC) emissions of building superstructures using identical frame configurations in steel, reinforced concrete, and engineered timber frames. These are assessed and compared for 127 different frame configurations, from 2 to 19 stories. Embodied carbon coefficients for each material and life cycle stage are represented by probability density functions to capture the uncertainty inherent in life cycle assessment. Normalized results show clear differences between the masses of the three structural typologies, with the concrete frame approximately five times the mass of the timber frame, and 50% higher than the steel frame. The WLEC emissions are mainly governed by the upfront emissions (cradle to practical completion), but subsequent emissions are still significant—particularly in the case of timber for which 36% of emissions, on average, occur post-construction. Results for WLEC are more closely grouped than for masses, with median values for the timber frame, concrete frame, and steel frame of 119, 185, and 228 kgCO2e/m2, respectively. Despite the advantage for timber in this comparison, there is overlap between the results distributions, meaning that close attention to efficient design and procurement is essential.
Online Access
Free
Resource Link
Less detail

Biomimicry as a Generator of Optimal Volumetrics in Wood

https://research.thinkwood.com/en/permalink/catalogue2195
Topic
Design and Systems
Organization
Université Laval
Topic
Design and Systems
Keywords
Biomimicry
Environmental Adaptation
Digital Fabrication
Material efficiency
Research Status
In Progress
Notes
Project contact is André Potvin at Université Laval
Summary
The biomimetic approach in architecture explores the genius of organic natural forms resulting from a long process of environmental adaptation. These forms often have a high compactness and an optimal material / volume ratio in line with the importance of reducing the material in the building to limit its environmental impact in terms of energy and resources. What are the natural forms and processes of growth of the form most appropriate to the physical properties of wood? What design process promotes the integration of a biomimetic approach from the earliest stages of design? Based on a review of the main achievements claiming this approach, this project will develop a taxonomy of the different biomimetic typologies and identify the most promising in the context of a wood realization. A digital manufacturing process will be developed to reflect the complexity of natural shapes and flows in an organic architecture that optimizes environmental performance and aesthetics.
Less detail