Wooden constructions are on the rise again – encouraged by a strong trend towards sustainable and resource efficient buildings. Load-bearing timber-glass composite elements – a novel concept to use the in-plane loadbearing potential of glass – could contribute to a more efficient use of materials in façades. The current study relates to the adhesive bond between the glass pane and the timber substructure. The applicability of structural sealants such as silicones is limited due to their distinct flexibility which leads to large deformations of the joint. Further potential arises from the use of adhesives of medium and high stiffness. Their general performance as well as their durability have not yet been evaluated with respect to the proposed use in building constructions. This paper draws attention to the ageing stability of two promising adhesives. Small-scale adhesively bonded specimens which are composed of a wooden and a glass piece are exposed to different ageing scenarios which relate to the impacts typically encountered in façades. Based on the results it can be concluded that the considered high-modules adhesives enable an increase of characteristic failure loads and a reduction of joint deformation, but also reveal shortcomings regarding their ageing stability.
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design.
In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
This paper presents an investigation of possible disproportionate collapse for a nine-storey flat-plate timber building, designed for gravity and lateral loads. The alternate load-path analysis method is used to understand the structural response under various removal speeds. The loss of the corner and penultimate ground floor columns are the two cases selected to investigate the contribution of the cross-laminated timber (CLT) panels and their connections, towards disproportionate collapse prevention. The results show that the proposed building is safe for both cases, if the structural elements are removed at a speed slower than 1 sec. Disproportionate collapse is observed for sudden element loss, as quicker removal speed require higher moments resistance, especially at the longitudinal and transverse CLT floor-to-floor connections. The investigation also emphasises the need for strong and stiff column-to-column structural detailing as the magnitude of the vertical downward forces, at the location of the removed columns, increases for quicker removal.
Buildings constructed for the U.S. Department of Defense (DoD) often have to meet blast-resistance requirements to mitigate the potential effects of terrorism. Terrorism is also a growing threat for civilian buildings (e.g., iconic structures, corporate headquarters, etc.), necessitating more building designers to incorporate blast resistance into their designs. The emergence of mass timber construction, and cross-laminated timber (CLT) in particular, offers a sustainable building material alternative that can also meet blast-resistance criteria in many circumstances.
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Timber structures are strongly depending on the design of connections, which are mostly constructed from steel components. However, these joints have a number of limitations such as the tendency to be heavy, proneness to corrosion and often poor aesthetic appearances. Therefore, this study aims to replace metallic joints by non-metallic materials. An experimental testing program was performed to investigate the use of glass fiber reinforced plastics (GFRP), densified veneer wood (DVW) and laminated veneer lumber (LVL) in the form of plates and dowels in different test configurations. Analytical and numerical models were developed to better understand the load-bearing behaviour and to perform static verifications. The models were validated based on the experimental results. The results demonstrate that the use of GFRP dowels in combination with GFRP plates can provide a robust connection system for contemporary applications.
Over the last two decades many constitutive models with different degrees of accuracy have been developed for analysis of sawn timber and engineered wood products. However, most of the existing models for analysis of timber members are not particularly practical to implement, owing to the large number of material properties (and associated testing) required for calibration of the constitutive law. In order to overcome this limitation, this paper presents details of 1D, 2D and 3D non-linear fi nite element (FE) models that take advantage of a quasi-brittle material model, requiring a minimum number of material properties to capture the load-defl ection response and failure load of timber beams under 4-point bending. In order to validate the model, four tapered timber piles with circular cross-section (two plains and two retrofi tted with steel jacket) were tested and analysed with the proposed 3D FE modelling technique; and a good correlation between experimentally observed and numerically captured ultimate load was observed. Consequently, it was concluded that the developed FE models used in conjunction with the quasi-brittle constitutive law were able to adequately capture the failure load and load-defl ection response of the fl exural timber elements.