Skip header and navigation

8 records – page 1 of 1.

Design Methods of Elements from Cross-Laminated Timber Subjected to Flexure

https://research.thinkwood.com/en/permalink/catalogue189
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Pakrastins, Leonids
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Finite Element Method (FEM)
Static Loading Test
Stress
Language
English
Research Status
Complete
Series
Procedia Engineering
Summary
Design methods of cross-laminated timber elements subjected to bending is considered. The methods are based on LVS EN 1995–1–1. The presented methods were checked by the experiment and analytically. Two cross-laminated timber plates with the total thickness of 95 mm were tested under action of static load. The considered cross-laminated timber plates were analysed by FEM method, which is based on the using of computational program ANSYSv14. The comparison of stresses acting in the edge fibres of the plate and the maximum vertical displacements shows that the considered methods can be used for engineering calculations so as the difference between the experimentally and analytically obtained results does not exceed 20%.
Online Access
Free
Resource Link
Less detail

Dynamic and Static Lateral Load Tests on Full-Sized 3-Storey CLT Construction for Seismic Design

https://research.thinkwood.com/en/permalink/catalogue481
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tsuchimoto, Takahiro
Kawai, Naohito
Yasumura, Motoi
Miyake, Tatsuya
Isoda, Hiroshi
Tsuda, Chihiro
Miura, Sota
Murakami, Satoshi
Nakagawa, Takafumi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Shake Table Test
Lateral Load Test
Shear Displacement
Joint Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The Japanese domestic forests have never been maintained enough, and it was a great fear that the multiple functions of the forest such as watershed conservation, the land conservation, and so on has been declined. The construction employing the cross laminates timber (CLT) panels was offered as a method of large scale building in domestic and foreign countries. However, the seismic design method of CLT panel construction has never completed. So, in order to consider the seismic design method, the shaking table tests and static lateral load tests were conducted to the modelized CLT panel construction.
Online Access
Free
Resource Link
Less detail

The Experimental Study on Seismic Performance of Cross-Laminated-Timber Panel Construction

https://research.thinkwood.com/en/permalink/catalogue972
Year of Publication
2012
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Suganumi, Naoto
Goto, Hiroshi
Yasumura, Motoi
Hamamoto, Takashi
Miyake, Tatsuya
Minoru, Okabe
Kaiko, Naoto
Nakagawa, Takafumi
Tsuda, Chihiro
Organization
Architectural Institute of Japan
Year of Publication
2012
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Keywords
Static Loading Test
Shaking Table Test
Language
Japanese
Research Status
Complete
Summary
The wood engineering community has dedicated a significant amount of effort over the last decades to establish a reliable predictive model for the load-carrying capacity of timber connections under wood failure mechanisms. Test results from various sources (Foschi and Longworth 1975; Johnsson 2003; Quenneville and Mohammad 2000; Stahl et al. 2004; Zarnani and Quenneville 2012a) demonstrate that for multi-fastener connections, failure of wood can be the dominant mode. In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum or the summation of the tensile and shear capacities of the failed wood block planes. This results in disagreements between the experimental values and the predictions. It is postulated that these methods are not appropriate since the stiffness in the wood blocks adjacent to the tensile and shear planes differs and this leads to uneven load distribution amongst the resisting planes (Johnsson 2004; Zarnani and Quenneville 2012a). The present study focuses on the nailed connections. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small dowel-type connections in timber products is thus proposed. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections (Zarnani and Quenneville 2013b).
Online Access
Free
Resource Link
Less detail

Factors that Affect Bolted Joints in Japanese Larch Glulam

https://research.thinkwood.com/en/permalink/catalogue1560
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Zhao, Rongjun
Wang, Zi
Ren, Haiqing
Zhou, Haibin
Xing, Xinting
Zhong, Yong
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Japanese Larch
Bolted Joints
Loading Test
China
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1458-1463
Summary
Japanese larch (Larix kaempferi) is an important species in China. The extensive use of Japanese larch can alleviate lumber shortage in China. Various grades of Japanese larch (Larix kaempferi) laminas were chosen to study the factors that affect the bolted joint performance. By comparing the loading test results with the required design values,it revealed that: (1) Bolt diameter affected the loading performance, then, bolt class, and the lamina grade was the least influential factor. (2) Japanese larch glulam can achieve the required designed value to be used as structural materials.
Online Access
Free
Resource Link
Less detail

Load Testing and Assessment of a Field Demonstration CLT Bridge

https://research.thinkwood.com/en/permalink/catalogue2570
Topic
Serviceability
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans
Organization
South Dakota State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans
Topic
Serviceability
Market and Adoption
Keywords
Field Measurements
Load Testing
Moisture Content
Visual Inspection
Long-term Performance
Research Status
In Progress
Notes
Project contact is Junwon Seo at South Dakota State University
Summary
Cross-Laminated Timber (CLT) has great potential to promote wood products markets in appropriate transportation structures, particularly bridges on low-volume roads such as rural or forest roads. The project’s goals are to perform field load testing and evaluation of a demonstration CLT bridge on the nation’s low-volume roads and evaluate its long-term performance under in-service loads and environmental exposure. The team will pursue these goals through the following research objectives: 1) Design the demonstration CLT bridge system with design details; 2) Fabricate the designed CLT bridge; 3) Install the fabricated CLT bridge on a roadway in Grand Portage National Monument with Western Wood Structures, Wheeler, Cook County in Minnesota and the National Park Service; and 4) Perform load testing to assess performance of the implemented bridge and monitor its moisture content and field performance through visual inspection for its long-term behavior evaluation.
Less detail

Structural Performance of Nail-Laminated Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2146
Year of Publication
2017
Topic
Connections
Material
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Hong, Kwan Eui Marcel
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Keywords
Truss Plates
Self-Tapping Screws
Strength
Stiffness
Shear Connectors
Quasi-Static Loading Test
Bending
Language
English
Research Status
Complete
Summary
Nail-laminated timber-concrete composite (TCC) is a system composed of a nail-laminated timber (NLT) panel connected to a concrete slab through shear connections. When used as flexural elements such as floors, the concrete and NLT are located in the compression and tension zones, respectively...
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Structure with Cross Laminated Timber: Part 12: Objective and Loading Procedure and Accuracy of Static Loading Test

https://research.thinkwood.com/en/permalink/catalogue983
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kaiko, Naoto
Hamamoto, Takashi
Gosei, Murakami
Yahaura, Sota
Miyake, Tatsuya
Goto, Hiroshi
Nakagawa, Takafumi
Yasumura, Motoi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Static Loading Test
Failure Behavior
Shear Force
Seismic Performance
Language
Japanese
Research Status
Complete
Summary
Cross-laminated timber (CLT) is a relatively new heavy timber construction material (also referred to as massive timber) that originated in central Europe and quickly spread to building applications around the world over the past two decades. Using dimension lumber (typically in the range of 1× or 2× sizes) glue laminated with each lamination layer oriented at 90° to the adjacent layer, CLT panels can be manufactured into virtually any size (with one dimension limited by the width of the press), precut and pregrooved into desirable shapes, and then shipped to the construction site for quick installation. Panelized CLT buildings are robust in resisting gravity load (compared to light-frame wood buildings) because CLT walls are effectively like solid wood pieces in load bearing. The design of CLT for gravity is relatively straightforward for residential and light commercial applications where there are plenty of wall lines in the floor plan. However, the behavior of panelized CLT systems under lateral load is not well understood especially when there is high seismic demand. Compared to light-frame wood shear walls, it is relatively difficult for panelized CLT shear walls to achieve similar levels of lateral deflection without paying special attention to design details, i.e., connections. A design lacking ductility or energy dissipating mechanism will result in high acceleration amplifications and excessive global overturning demands for multistory buildings, and even more so for tall wood buildings. Although a number of studies have been conducted on CLT shear walls and building assemblies since the 1990s, the wood design community’s understanding of the seismic behavior of panelized CLT systems is still in the learning phase, hence the impetus for this article and the tall CLT building workshop, which will be introduced herein. For example, there has been a recent trend in engineering to improve resiliency, which seeks to design a building system such that it can be restored to normal functionality sooner after an earthquake than previously possible, i.e., it is a resilient system. While various resilient lateral system concepts have been explored for concrete and steel construction, this concept has not yet been realized for multistory CLT systems. This forum article presents a review of past research developments on CLT as a lateral force-resisting system, the current trend toward design and construction of tall buildings with CLT worldwide, and attempts to summarize the societal needs and challenges in developing resilient CLT construction in regions of high seismicity in the United States.
Online Access
Free
Resource Link
Less detail

A Vibration-Based Approach for the Estimation of the Loss of Composite Action in Timber Composite Systems

https://research.thinkwood.com/en/permalink/catalogue218
Year of Publication
2013
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Dackermann, Ulrike
Li, Jianchun
Rijal, Rajendra
Samali, Bijan
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Mechanical Properties
Keywords
Non-Destructive Testing
Static Loading Test
Damage Index (DI) Method
Loss of Composite Action Index (LCAI)
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
This paper presents a novel approach for the determination of the loss of composite action for timber composite systems using only measurements from non-destructive vibration testing. Traditionally, the composite action of a system is evaluated from static load testing using deflection measurements. However, static load testing is expensive, time consuming and inappropriate for existing flooring systems. The method proposed in this paper is based on the Damage Index (DI) method, which uses changes in modal strain energies, to detect locations and severities of damage. In the proposed method, a new Loss of Composite Action Index (LCAI), which is derived from direct mode shape measurements obtained from dynamic testing, is introduced to evaluate the loss of composite action. The proposed method is tested and validated on numerical and experimental models of a timber composite beam structure, which consists of two timber components that are connected with different numbers of screws to simulate various degrees of partial composite states. The results obtained from the new method are very encouraging and show a clear trend of the proposed dynamic-based LCAI in indicating the loss of composite action in the investigated timber composite structure.
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.