Skip header and navigation

8 records – page 1 of 1.

Analytical Model to Evaluate the Equivalent Viscous Damping of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1893
Year of Publication
2012
Topic
Connections
Application
Frames

Ductility of Wooden Structures Including Solid Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2189
Topic
Design and Systems
Seismic
Application
Wood Building Systems
Organization
Université de Sherbrooke
Country of Publication
Canada
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Pushover Response
Ductility Factors
Non-linear Dynamic Analysis
Research Status
In Progress
Notes
Project contact is Jean Proulx at Université de Sherbrooke
Summary
This project will involve the modeling of typical multistage buildings and non-linear dynamic analyzes for various seismic hazards (Montreal, Quebec, Charlevoix). The models will be developed using OpenSees, and validated with commercial software (SAFI, SAP2000). The temporal responses of typical buildings, subject to earthquakes generated for the region, will be calculated for different parameters (number of floors, bays, types of SRFS). Pushover type analyzes will also be carried out (rigid frame systems or shear walls). Sectional ductility demands will be evaluated for different types of wood sections and assemblies. These ductility values will be used to target the best wood seismic resistance systems, depending on the type of construction.
Less detail

Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1221
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems

Linear Dynamic Analysis for Wood-Based Shear Walls and Podium Structures: Part 1: Developing Input Parameters for Linear Dynamic Analysis

https://research.thinkwood.com/en/permalink/catalogue740
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ni, Chun
Newfield, Grant
Wang, Jasmine
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Keywords
Deflection
Linear Dynamic Analysis
National Building Code of Canada
Stiffness
Floor Drifts
Language
English
Research Status
Complete
Summary
Utilizing Linear Dynamic Analysis (LDA) for designing steel and concrete structures has been common practice over the last 25 years. Once preliminary member sizes have been determined for either steel or concrete, building a model for LDA is generally easy as the member sizes and appropriate stiffness...
Online Access
Free
Resource Link
Less detail

Methods for Practice-Oriented Linear Analysis in Seismic Design of Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2304
Year of Publication
2020
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Mitigating Torsional Irregularity using Cross Laminated Timber-Reinforced Concrete Hybrid System

https://research.thinkwood.com/en/permalink/catalogue1264
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Potential for Design Optimisation of a Six-Storey Lightframe Wood Building Using Linear Dynamic Analysis

https://research.thinkwood.com/en/permalink/catalogue1661
Year of Publication
2016
Topic
Mechanical Properties
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Tremblay-Auclair, Jean-Philippe
Salenikovich, Alexander
Frenette, Caroline
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Design and Systems
Keywords
Canada
Braced Frame Model
Linear Dynamic Analysis
Mid-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3649-3656
Summary
Recently, Canadian building regulations have allowed construction of light-frame wood buildings up to six storeys. Even though equivalent static force procedure (ESFP) is generally used for the seismic design of such buildings, in cases of irregular structures and in high seismic zones a linear dynamic analysis (LDA) is required by the...
Online Access
Free
Resource Link
Less detail

Technical Guide for Evaluation of Seismic Force Resisting Systems and Their Force Modification Factors for Use in the National Building Code of Canada with Concepts Illustrated Using a Cantilevered Wood CLT Shear Wall Example

https://research.thinkwood.com/en/permalink/catalogue2804
Year of Publication
2021
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
DeVall, Ron
Popovski, Marjan
McFadden, Jasmine
Organization
National Research Council Canada, Canadian Construction Materials Centre
Publisher
National Research Council Canada
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Seismic Force Resisting System
Force Modification Factor
Ductility Factor
Overstrength
Non-linear Dynamic Analysis
National Building Code of Canada
Alternative Design Solution
Shear Walls
Language
English
Research Status
Complete
ISBN
978-0-660-39263-9
Summary
The objective of this guideline is to provide a simple, systematic, and sufficient procedure for evaluating the performance of Seismic Force Resisting Systems (SFRSs) and to determine the appropriate ductilityrelated (Rd) and over-strength related (Ro) force modification factors for implementation in the National Building Code of Canada (NBC). The procedure relies on the application of non-linear dynamic analysis for quantification of the seismic performance of the SFRS. Note that the procedure is also suitable for assessing force modification factors (RdRo values) of systems already implemented in the NBC. The audience for this guideline are those (called the “project study team” in this document) who submit proposals for new SFRSs with defined RdRo values to the NBC for inclusion in Subsection 4.1.8., Earthquake Loads and Effects, of Division B of the NBC. This guideline can also be used by a team performing an alternative design solution for a specific project and seeking acceptance from authority having jurisdiction. In such cases, not all aspects of this guideline (e.g., having different archetypes) will be needed.
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.