Skip header and navigation

10 records – page 1 of 1.

Brock Commons Tallwood House, University of British Columbia: An Environmental Building Declaration According to EN 15978 Standard

https://research.thinkwood.com/en/permalink/catalogue2158
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems

A Cradle-to-Gate Life Cycle Assessment of Canadian Glulam

https://research.thinkwood.com/en/permalink/catalogue2155
Year of Publication
2018
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)

A Cradle-to-Gate Life Cycle Assessment of Canadian Laminated Veneer Lumber (LVL)

https://research.thinkwood.com/en/permalink/catalogue2153
Year of Publication
2018
Topic
Environmental Impact
Material
LVL (Laminated Veneer Lumber)

Embodied Carbon in Buildings: Measurement, Management, and Mitigation

https://research.thinkwood.com/en/permalink/catalogue2756
Year of Publication
2018
Topic
Environmental Impact
Application
Hybrid Building Systems
Wood Building Systems
Editor
Pomponi, Francesco
De Wolf, Catherine
Moncaster, Alice
Publisher
Springer
Year of Publication
2018
Country of Publication
Switzerland
Format
Book/Guide
Application
Hybrid Building Systems
Wood Building Systems
Topic
Environmental Impact
Keywords
Embodied Carbon
Embodied Emissions
Calculation
Life-Cycle Assessment
Language
English
Research Status
Complete
ISBN
978-3-319-72796-7
Summary
This book provides a single-source reference for whole life embodied impacts of buildings. The comprehensive and persuasive text, written by over 50 invited experts from across the world, offers an indispensable resource both to newcomers and to established practitioners in the field. Ultimately it provides a persuasive argument as to why embodied impacts are an essential aspect of sustainable built environments. The book is divided into four sections: measurement, including a strong emphasis on uncertainty analysis, as well as offering practical case studies of individual buildings and a comparison of materials; management, focusing in particular on the perspective of designers and contractors; mitigation, which identifies some specific design strategies as well as challenges; and finally global approaches, six chapters which describe in authoritative detail the ways in which the different regions of the world are tackling the issue. Provides a comprehensive, up-to-date guide to embodied carbon calculation and reduction, with a particular focus on understanding uncertainty; includes examples of approaches used by industry professionals, and specific routes to embodied carbon reduction; identifies the methodologies, tools and standards in use around the world.
Online Access
Payment Required
Resource Link
Less detail

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

Lessons Learned from Life Cycle Assessment and Life Cycle Costing of Two Residential Towers at the University of British Columbia

https://research.thinkwood.com/en/permalink/catalogue1223
Year of Publication
2018
Topic
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Teshnizi, Zahra
Pilon, Angelique
Storey, Stefan
Lopez, Diana
Froese, Thomas
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Cost
Environmental Impact
Keywords
Life-Cycle Assessment
Life Cycle Costing
High-Rise
Residential
Brock Commons
Concrete
Language
English
Research Status
Complete
Series
Procedia CIRP
Summary
The University of British Columbia has an interest in incorporating life cycle environmental impacts and financial information into project planning, as well as research and teaching. As part of a tall wood building research program with the UBC Sustainability Initiative and Dept. of Civil Engineering, a comprehensive life cycle assessment (LCA) and life cycle costing (LCC) study was done of two student high-rise residential buildings, based on the result of whole building LCA done by Athena Sustainable Materials Institute and whole building LCC done by Sensible Building Science. These buildings are of similar design but Brock Commons Tallwood House has a hybrid mass-timber structure and Ponderosa Commons Cedar House has a more traditional concrete structure. This paper will include a brief overview of the research process, data collection, analysis, and key results. The paper will then focus on the main opportunities, challenges, and lessons learned from both the results of the LCA/LCC projects and the process of conducting the study.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment and Environmental Building Declaration for the Design Building at the University of Massachusetts

https://research.thinkwood.com/en/permalink/catalogue1836
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

A New Concrete-Glulam Prefabricated Composite Wall System: Thermal Behavior, Life Cycle Assessment and Structural Response

https://research.thinkwood.com/en/permalink/catalogue1296
Year of Publication
2018
Topic
Mechanical Properties
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Author
Boscato, Giosuè
Dalla Mora, Tiziano
Peron, Fabio
Russo, Salvatore
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Environmental Impact
Keywords
Strength
Stiffness
Concrete Glulam Framed Panel
Thermal Behaviour
Carbon Footprint
Embodied Energy
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
In a former paper by the authors [1], the elastic behavior of Cross Laminated Timber (CLT) and timber panels having periodic gaps between lateral lamellae has been analyzed. A thick plate homogenization scheme based on Finite Elements computations has been applied. The predicted behavior was in agreement with experimental results. In this paper, simplified closed-form solutions are derived in order to avoid FE modeling. Both cases of narrow gaps of CLT panels and wide gaps of innovative lightweight panels are investigated. CLT and timber panels with gaps are modeled as a space frame of beams connected with wooden blocks. The contribution of both beams and blocks to the panel’s mechanical response is taken into account, leading to closed-form expressions for predicting the panel’s stiffnesses and maximum longitudinal and rolling shear stresses. The derived closed-form solutions are in agreement with the reference FE results and they can be used for practical design purposes.
Online Access
Free
Resource Link
Less detail

Prototype Mass Timber Office Building Models: Material Quantities and Preliminary Life Cycle Assessment: Internal Report

https://research.thinkwood.com/en/permalink/catalogue2547
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Ganguly, Indroneil
Eastin, Ivan
Simonen, Kathrina
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Environmental Impact
Keywords
Mid-Rise
Mass Timber
Prototype
Model
LCA
Life-Cycle Assessment
Language
English
Research Status
Complete
Summary
The goal of this work was to develop material quantity estimates of a typical mid-rise office building in the Pacific Northwest and to deliver the results to the Forestry Research Team in the University of Washington (UW) College of the Environment School of Environmental and Forest Sciences. The Forestry Research Team will then use these results to develop regionally specific life cycle inventory data to support the greater study funded by the 2015 McIntire-Stennis Research Grant, which is “to assist small and medium-sized wood products companies and Native American tribal enterprises to understand and adapt to changing market conditions” (http://depts.washington.edu/sefsifr/2015-mcintire-stennis-grantwinners/).
Online Access
Free
Resource Link
Less detail

Why Method Matters: Temporal, Spatial and Physical Variations in LCA and Their Impact on Choice of Structural System

https://research.thinkwood.com/en/permalink/catalogue2142
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Moncaster, Alice
Pomponi, Francesco
Symons, Katherine
Publisher
Elsevier
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Case Study
Buildings
Residential
Language
English
Research Status
Complete
Series
Energy and Buildings
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.