Skip header and navigation

12 records – page 1 of 2.

An Application of the CEN/TC350 Standards to an Energy and Carbon LCA of Timber Used in Construction, and the Effect of End-of-Life Scenarios

https://research.thinkwood.com/en/permalink/catalogue2376
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Symons, Katie
Moncaster, Alice
Symons, Digby
Year of Publication
2013
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Embodied Carbon
Life-Cycle Assessment
Built Environment
End of Life
LCA
Europe
Language
English
Conference
Australian Life Cycle Assessment Society conference
Research Status
Complete
Summary
The use of timber construction products and their environmental impacts is growing in Europe. This paper examines the LCA approach adopted in the European CEN/TC350 standards, which are expected to improve the comparability and availability of Environmental Product Declarations (EPDs). The embodied energy and carbon (EE and EC) of timber products is discussed quantitatively, with a case study of the Forte building illustrating the significance of End-of-Life (EoL) impacts. The relative importance of timber in the context of all construction materials is analysed using a new LCA tool, Butterfly. The tool calculates EE and EC at each life cycle stage, and results show that timber products are likely to account for the bulk of the EoL impacts for a typical UK domestic building.
Online Access
Free
Resource Link
Less detail

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

A Case Study to Investigate the Life Cycle Carbon Emissions and Carbon Storage Capacity of a Cross Laminated Timber, Multi-Storey Residential Building

https://research.thinkwood.com/en/permalink/catalogue2139
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Darby, Howard
Elmualim, Abbas
Kelly, F.
Year of Publication
2013
Country of Publication
Germany
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Embodied Carbon
Life-Cycle Assessment
Multi-Storey
Multi-Family
Language
English
Conference
Sustainable Building Conference
Research Status
Complete
Notes
23-25 April 2013, Munich, Germany
Online Access
Free
Resource Link
Less detail

A Comparative Life Cycle Assessment Approach of Two Innovative Long Span Timber floors with its Reinforced Concrete Equivalent in an Australian Context

https://research.thinkwood.com/en/permalink/catalogue2375
Year of Publication
2015
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Author
Basaglia, Bella
Lewis Kirsten
Shrestha, Rijun
Crews, Keith
Publisher
School of Civial Engineering, The University of Queensland
Year of Publication
2015
Country of Publication
Australia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainable Materials
LCA
Life-Cycle Assessment
Mid-Rise
Concrete
Language
English
Conference
International Conference on Performance-based and Life-cycle Structural Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Comparison of Sustainability Performance for Cross Laminated Timber and Concrete

https://research.thinkwood.com/en/permalink/catalogue509
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Piacenza, Joseph
Tumer, Irem
Seyedmahmoudi, Seyedhamed
Haapala, Karl
Hoyle, Christopher
Publisher
ASME
Year of Publication
2013
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Social Impact
Sustainability
Reinforced Concrete
Economic Aspect
Manufacturing
Language
English
Conference
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Research Status
Complete
Notes
August 4–7, 2013, Portland, Oregon, USA
Summary
As sustainable building design practices become more prevalent in today’s construction market, designers are looking to alternative materials for novel design strategies. This paper presents a case study comparing the sustainability performance of cross laminated timber (CLT) and reinforced concrete. A comparative sustainability assessment of cross laminated timber and concrete, considering economic, environmental, and social aspects was performed. Environmental impact is measured in terms of CO2 equivalent, economic impact is measured with total sector cost (including sector interdependencies), and qualitative metrics were considered for social impact. In order to conduct an accurate performance comparison, a functional unit of building facade volume was chosen for each product. For this paper, several end-of-life strategies were modeled for CLT and concrete facades. To understand environmental, economic, and social impact, three different scenarios were analyzed to compare performance of both CLT and concrete, including cradle to gate product manufacturing, manufacturing with landfill end-of-life, and manufacturing with recycling end-of-life. Environmental LCA was modeled using GaBi 5.0 Education Edition, which includes its own database for elements including materials, processes, and transportation. To compare the economic impact, Carnegie Mellon’s EIO-LCA online tool is used. Finally, social life cycle impact was considered by identifying process attributes of both products that affect the social domain. Based on this analysis, the use of CLT has a significantly lower environmental impact than concrete, however there are additional costs.
Online Access
Payment Required
Resource Link
Less detail

Eco-friendly Mid-rise Apartments Using CLT Panels

https://research.thinkwood.com/en/permalink/catalogue2202
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

Environmental Performance of Timber Constructions Located in Highly Utilised Area - Based on Realised Buildings Made of Sawn Timber or CLT

https://research.thinkwood.com/en/permalink/catalogue1642
Year of Publication
2016
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Yeh, Yu-hsiang
Chiao, Chih-kang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Energy Performance
Keywords
Life-Cycle Assessment
Multi-Storey
Reinforced Concrete
Steel
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3253-3260
Summary
The purpose of this research is to evaluate the environmental performance of various timber constructions that have been realised within intensively utilised area in recent years. The appraisal is carried out by means of life cycle assessment (LCA) and covers different timber constructions, mainly the multi-storey building. The ultimate goal is to compare their environmental performance to the outcomes of other constructions like reinforced concrete (RC) and steel construction (SC). The environmental burdens caused by constructions are evaluated based on the framework of LCA. First, the material inventory of selected building projects is established. The scope is emphasised on the primary structural elements such as columns, beams, deck, load-bearing wall and roof. Secondary components, facility and decoration are eliminated out of the research boundary. Based on the material inventory, the impact assessment is carried out to preliminarily calculate the embodied outcome of the timber constructions. The environmental implications of structural elements during early life cycle stages are evaluated. Then, the effect of both disposal and material recycling is integrated in the LCA, including reuse or recovery of the structural wooden components. The LCA takes into account different disposal scenarios associated with construction and demolition waste (C&DW). By doing so, the LCA is the so-called ‘from cradle to gate’ and ‘gate to cradle’, without consideration upon the using phase. Among numerous environmental indictors, this research quantifies and discusses the energy consumption and global warming potential (GWP) of the timber buildings only. The five-storey timber building located in urban context is a pioneer project in Taiwan. This building applies crosslaminated-timber (CLT) as the primary structural elements and takes over tremendous loading circumstances. It demonstrates not only the engineering feasibility of CLT for architectural design but also the utilising compatibility of wooden house in urban context. The environmental evaluation proofs the ecological efficiency of timber buildings. In addition, this study compares the environmental performance of timber constructions and other materials. Alternative building models made of RC and steel are developed and intended for further LCA. The LCA results demonstrate that timber constructions cause significantly less impacts than RC and SC do. Timber constructions exhibit carbon sequestration effect, which is unique among three materials. Meanwhile, timber constructions consume only about 20% energy of the RC and SC. While possessing similar form and functionality, timber constructions exhibit better eco-efficiency compared to other generally used materials. When the material recycling is taken into account, the life-cycle eco-efficiency of timber structures is further significant. Wooden constructions can be energy-neutral or even energy-productive, depending on the recycling strategies.
Online Access
Free
Resource Link
Less detail

Life Cycle Analysis of Cross Laminated Timber in Buildings: A Review

https://research.thinkwood.com/en/permalink/catalogue2141
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Life Cycle Assessment of a Post-Tensioned Timber Frame in Comparison to a Reinforced Concrete Frame for Tall Buildings

https://research.thinkwood.com/en/permalink/catalogue412
Year of Publication
2016
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Cattarinussi, Laurent
Hofstetter, Kathrin
Ryffel, Rinaldo
Zumstein, K.
Ioannidou, Dimitra
Klippel, Michael
Year of Publication
2016
Country of Publication
Switzerland
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Environmental Impact
Keywords
Concrete
Sustainability
Life-Cycle Assessment
Post-Tensioned
Greenhouse Gases
Costs
Construction Time
Language
English
Conference
SBE Regional Conference
Research Status
Complete
Notes
June 15-17, 2016, Zurich, Switzerland
Summary
Consuming over 40% of total primary energy, the built environment is in the centre of worldwide strategies and measures towards a more sustainable future. To provide resilient solutions, a simple optimisation of individual technologies will not be sufficient. In contrast, whole system thinking reveals and exploits connections between parts. Each system interacts with others on different scales (materials, components, buildings, cities) and domains (ecology, economy and social). Whole-system designers optimize the performance of such systems by understanding interconnections and identifying synergies. The more complete the design integration, the better the result. In this book, the reader will find the proceedings of the 2016 Sustainable Built Environment (SBE) Regional Conference in Zurich. Papers have been written by academics and practitioners from all continents to bring forth the latest understanding on systems thinking in the built environment.
Online Access
Free
Resource Link
Less detail

12 records – page 1 of 2.