Australian Life Cycle Assessment Society conference
Research Status
Complete
Summary
The use of timber construction products and their environmental impacts is growing in Europe. This paper examines the LCA approach adopted in the European CEN/TC350 standards, which are expected to improve the comparability and availability of Environmental Product Declarations (EPDs). The embodied energy and carbon (EE and EC) of timber products is discussed quantitatively, with a case study of the Forte building illustrating the significance of End-of-Life (EoL) impacts. The relative importance of timber in the context of all construction materials is analysed using a new LCA tool, Butterfly. The tool calculates EE and EC at each life cycle stage, and results show that timber products are likely to account for the bulk of the EoL impacts for a typical UK domestic building.
Timber-concrete composite (TCC) ceilings build on the idea of making use of the advantageous properties of both materials symbiotically. While concrete, as the upper layer, is used to absorb the compression forces, wood is used in the lower layer to absorb the tensile forces. Many systems have been developed with special attention paid to solutions with both a continuous concrete and wood layer. This article introduces a new system developed with the primary focus set on the most efficient material use by introducing a free space between the concrete and the wood layer using special vault shaped moldings. The first part of the paper contains an introduction including a short overview of different embodiments of TCC floor systems. The second part focuses on the design of the new system and gives an overview of the estimated structural performance. In the third part the environmental performance of the new system is discussed in comparison to chosen existing systems focusing at the the whole life-cycle including a re-use (A-D).
Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China is not as rapid as in some other countries. This may be because of the limitations of building regulations and technological development. Several new policies have been or are being implemented in China in order to encourage the use of timber in building construction and this could lead to a revolutionary change in the building industry in China. This paper is the first one to examine the feasibility of using Cross Laminated Timber (CLT) as an alternative solution to concrete by means of a cradle-to-grave life-cycle assessment in China. A seven-storey reference concrete building in Xi’an was selected as a case study in comparison with a redesigned CLT building. Two cities in China, in cold and severe cold regions (Xi’an and Harbin), were selected for this research. The assessment includes three different stages of the life span of a building: materialisation, operation, and end-of-life. The inventory data used in the materialisation stage was mostly local, in order to ensure that the assessment appropriately reflects the situation in China. Energy consumption in the operation stage was obtained from simulation by commercialised software IESTM, and different scenarios for recycling of timber material in the end-of-life are discussed in this paper. The results from this paper show that using CLT to replace conventional carbon intensive material would reduce energy consumption by more than 30% and reduce CO2 emission by more than 40% in both cities. This paper supports, and has shown the potential of, CLT being used in cold regions with proper detailing to minimise environmental impact.
Project contact is Hongmei Gu at the Forest Products Laboratory
Summary
The FPL team is in charge of developing a full comparative LCA study for three multiple-story mass timber buildings and their concrete alternatives in the U.S. Northeast region, with Boston as the point location. Using these three comparative LCAs, this research will determine the GHG emissions reduction potential from mass timber use in the building sector for the U.S. region. This may increase potential for growth in wood utilization, timber harvest, and forest management practices through the market demands.
Sustainable Northwest (SNW) and Hacienda Community Development Group (HCDC), both based in Oregon, have proposed a plan to demonstrate pathways for building affordable housing with regionally sourced mass timber. In response to the region’s housing shortage, the partners’ proposal demonstrates the use of mass timber products while supporting efforts to educate stakeholders on wood product companies and forest restoration. The project outlines a plan to explore financing options, build one or more prototypes, and perform a structural material life cycle analysis.
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed.
This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost.
For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.