Skip header and navigation

63 records – page 1 of 7.

Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs

https://research.thinkwood.com/en/permalink/catalogue2397
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans

Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan

https://research.thinkwood.com/en/permalink/catalogue2412
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Comparative Life-cycle Assessment of a Mass Timber Building and Concrete Alternative

https://research.thinkwood.com/en/permalink/catalogue2429
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings

https://research.thinkwood.com/en/permalink/catalogue2465
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Chen, Zhongjia
Gu, Hongmei
Bergman, Richard
Liang, Shaobo
Publisher
MDPI
Year of Publication
2020
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Cradle-to-Grave
Life-Cycle Assessment
Reinforced Concrete
Language
English
Research Status
Complete
Series
Sustainability
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of Katerra's Cross-Laminated Timber and Catalyst Building: Summary Document

https://research.thinkwood.com/en/permalink/catalogue2546
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Organization
Carbon Leadership Forum
Center for International Trade in Forest Products
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
LCA
Life-Cycle Assessment
Environmental Performance
Mid-Rise
Language
English
Research Status
Complete
Summary
Katerra is a start-up construction company that has developed a vertically integrated cross-laminated timber (CLT) manufacturing supply chain and facility. Katerra commissioned the Carbon Leadership Forum (CLF) and the Center for International Trade in Forest Products (CINTRAFOR) at the University of Washington to perform a life cycle assessment (LCA) study to understand the environmental impacts and opportunities for impact reduction in Katerra’s CLT supply chain and manufacturing process. CINTRAFOR performed an LCA of the CLT supply chain and production process while the CLF performed a whole building LCA of a new building that used CLT produced at Katerra’s CLT facility.
Online Access
Free
Resource Link
Less detail

Dynamic Life Cycle Carbon and Energy Analysis for Cross-Laminated Timber in the Southeastern United States

https://research.thinkwood.com/en/permalink/catalogue2688
Year of Publication
2020
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Author
Lan, Kai
Kelley, Stephen
Nepal, Prakash
Yao, Yuan
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Energy Performance
Keywords
Life-Cycle Assessment
LCA
Dynamic
Carbon Analysis
Greenhouse gas emissions
Energy Consumption
Cradle-to-Grave
Language
English
Research Status
Complete
Series
Environmental Research Letters
Summary
Life Cycle Assessment (LCA) has been used to understand the carbon and energy implications of manufacturing and using cross-laminated timber (CLT), an emerging and sustainable alternative to concrete and steel. However, previous LCAs of CLT are static analyses without considering the complex interactions between the CLT manufacturing and forest systems, which are dynamic and largely affected by the variations in forest management, CLT manufacturing, and end-of-life options. This study fills this gap by developing a dynamic life-cycle modeling framework for a cradle-to-grave CLT manufacturing system across 100 years in the Southeastern United States. The framework integrates process-based simulations of CLT manufacturing and forest growth as well as Monte Carlo simulation to address uncertainty. On 1-ha forest land basis, the net greenhouse gas (GHG) emissions ranges from -954 to -1445 metric tonne CO2 eq. for a high forest productivity scenario compared to -609 to -919 for a low forest productivity scenario. All scenarios showed significant GHG emissions from forest residues decay, demonstrating the strong need to consider forest management and their dynamic impacts in LCAs of CLT or other durable wood products (DWP). The results show that using mill residues for energy recovery has lower fossil-based GHG (59%–61% reduction) than selling residues for producing DWP, but increases the net GHG emissions due to the instantaneous release of biogenic carbon in residues. In addition, the results were converted to 1 m3 basis with a cradle-to-gate system boundary to be compared with literature. The results, 113–375 kg CO2 eq./m3 across all scenarios, were consistent with previous studies. Those findings highlight the needs of system-level management to maximize the potential benefits of CLT. This work is an attributional LCA, but the presented results lay a foundation for future consequential LCAs for specific CLT buildings or commercial forest management systems.
Online Access
Free
Resource Link
Less detail

Wood Buildings as a Climate Solution

https://research.thinkwood.com/en/permalink/catalogue2739
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Himes, Austin
Busby, Gwen
Publisher
ScienceDirect
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Global Warming
Carbon
LCA
Life Cycle Analysis
Mid-Rise
Construction
Language
English
Research Status
Complete
Series
Developments in the Built Environment
Summary
We conducted a systematic literature search and meta-analysis of studies with side-by-side life cycle analysis comparisons of mid-rise buildings using mass timber and conventional, concrete and steel, building materials. Based on 18 comparisons across four continents, we found that substituting conventional building materials for mass timber reduces construction phase emissions by 69%, an average reduction of 216 kgCO2e/m2 of floor area. Studies included in our analysis were unanimous in showing emissions reductions when building with mass timber compared to conventional materials. Scaling-up low-carbon construction, assuming mass timber is substituted for conventional building materials in half of expected new urban construction, could provide as much as 9% of global emissions reduction needed to meet 2030 targets for keeping global warming below 1.5 °C. Realizing the climate mitigation potential of mass timber building could be accelerated by policy and private investment. Policy actions such as changing building codes, including mass timber in carbon offset crediting programs and setting building-sector-specific emissions reduction goals will remove barriers to and incentivize the adoption of mass timber. Private capital, as debt or equity investment, is poised to play a crucial role in financing mass timber building.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix

https://research.thinkwood.com/en/permalink/catalogue2009
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Chen, Cindy
Pierobon, Francesca
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Cradle-to-Gate
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Online Access
Free
Resource Link
Less detail

Life Cycle Analysis of Cross Laminated Timber in Buildings: A Review

https://research.thinkwood.com/en/permalink/catalogue2141
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Lumber-Based Mass Timber Products in Construction

https://research.thinkwood.com/en/permalink/catalogue2163
Year of Publication
2019
Topic
General Information
Material
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
CLT (Cross-Laminated Timber)

63 records – page 1 of 7.