Skip header and navigation

2 records – page 1 of 1.

Design Example: Design of Stacked Multi-Storey Wood Shear Walls Using a Mechanics Based Approach

https://research.thinkwood.com/en/permalink/catalogue739
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Codes
National Building Code of Canada
Lateral Seismic Loads
Language
English
Research Status
Complete
Summary
Figure 1 shows a floor plan and elevation along with the preliminary shear wall locations for a sixstorey wood-frame building. It is assumed some preliminary calculations have been provided to determine the approximate length of wall required to resist the lateral seismic loads. If the preliminary design could not meet the drift limit requirement using the base shear obtained based on the actual period, the shear walls should be re-designed until the drift limit requirement is satisfied.
Online Access
Free
Resource Link
Less detail

NHERI Tall Wood Project

https://research.thinkwood.com/en/permalink/catalogue2556
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
Colorado School of Mines
LEVER Architecture
Lehigh University
University of Washington
University of Nevada
University of California San Diego
Colorado State University
Oregon State University
TallWood Design Institute
Forest Products Laboratory
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Lateral Seismic Loads
Resilience-Based Seismic Design
Performance-Based Seismic Design
Commercial Buildings
Open Floor Plan
Research Status
In Progress
Notes
Project contact is Shiling Pei at the Colorado School of Mines
Summary
NHERI Tallwood project is an effort to develop and validate a resilient-based seismic design methodology for tall wood buildings. The project started in September 2016 and will last till 2020. The project team will validate the design methodology through shake table testing of a 10-story full-scaled wood building specimen at NHERI@UCSD. It will be the world's largest wood building tested at full-scale.
Resource Link
Less detail