This project studied the effect of openings on the lateral performance of CLT shear walls
and the system behavior of the walls in a module. Three-layer Cross Laminated Timber
(CLT) was used for manufacturing the wall and module specimens. The laminar was
Spruce-Pine-Fir (SPF) #2&Better for both the major and minor layers. Each layer was 35
mm thick. The panel size was 2.44 m × 2.44 m.
Four configurations of walls were investigated: no opening, 25% opening, 37.5% opening,
and 50% opening. The opening was at the center of the wall and in the shape of a square.
A CLT module was made from two walls with 50% openings, with an overall thickness of
660 mm. The specimens were tested under monotonic loading and reverse-cyclic loading,
in accordance with ASTM E564-06 (2018) and ASTM E2126-19.
The wall without opening had an average peak load of 111.8 kN. It had little internal
deformation and the failure occurred at the connections. With a 25% opening, deformation
within the wall was observed but the failure remained at the connections. It had the same
peak load as the full wall. When the opening was increased to 37.5%, the peak load
decreased by 6% to 104.9 kN and the specimens failed in wood at the corners of the
opening. Further increasing the opening to 50%, the peak load dropped drastically to 63.4
kN, only 57% of the full wall.
The load-displacement relationship was approximately linear until the load reached 60%
of the peak or more. Compared to the full wall, the wall with 25% opening had 65% of the
stiffness. When the opening increased to 37.5% and 50%, the stiffness reduced to 50% and
24% of the full wall, respectively. The relationship between stiffness and opening ratio was
approximately linear. The loading protocol had effect on the peak load but not on the
stiffness. There was more degradation for larger openings under reverse-cyclic loading.
The performance of the module indicated the presence of system effect that improves the
ductility of the wall, which is important for the seismic performance of the proposed
midrise to tall wood buildings. The test data was compared to previous models found in
literature. Simplified analytical models were also developed to estimate the lateral stiffness
and strength of CLT wall with openings.