Skip header and navigation

39 records – page 1 of 4.

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sullivan, Kyle
Organization
Oregon State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Lateral Load Resisting System
Monotonic Tests
Cyclic Tests
Strength
Stiffness
Self-Tapping Screws
International Building Code
Language
English
Research Status
Complete
Summary
The goal of this project is to contribute to the development of design values for cross-laminated timber (CLT) diaphragms in the seismic load-resisting system for buildings. Monotonic and cyclic tests to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with common self-tapping screws were performed. Understanding and quantifying the behavior of these shear connections will aid in developing design provisions in the National Design Specification for Wood Construction and the International Building Code so structural engineers can use CLT more confidently in lateral force-resisting systems and extend the heights of wood buildings. Experimental strength-to-design strength ratios were in the range of 2.1 to 8.7. In the ASCE 41 acceptance criteria analysis, the m-factors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections, where screws were installed in withdrawal, shear, shear, and withdrawal, performed exceptionally well with both high, linear-elastic, initial stiffness, and ductile, post-peak behavior.
Online Access
Free
Resource Link
Less detail

Behaviour of Cross-laminated Timber Wall Systems Under Monotonic Lateral Loading

https://research.thinkwood.com/en/permalink/catalogue2404
Year of Publication
2019
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
McPolin, Daniel
Hughes, C.
McGetrick, P.
McCrum, D.
Publisher
Taylor&Francis Online
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Keywords
Tall Timber Buildings
Lateral Load
Earthquake
Language
English
Research Status
Complete
Series
Journal of Structural Integrity and Maintenance
Online Access
Free
Resource Link
Less detail

Behaviour of Multi-Storey Cross-Laminated Timber Buildings Under Lateral Loading

https://research.thinkwood.com/en/permalink/catalogue2715
Year of Publication
2020
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Hughes, Claire
Publisher
Queen's University Belfast
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Design and Systems
Keywords
Lateral Loading
Tall Wood
Tall Timber Buildings
Connections
Monotonic Loading Tests
Constant Vertical Load
Wall Systems
Experimental Tests
Analytical Approach
Multi-Storey
Language
English
Research Status
Complete
Summary
In response to the global drive towards sustainable construction, CLT has emerged as a competitive alternative to other construction materials. CLT buildings taller than 10-storeys and CLT buildings in regions of moderate to high seismicity would be subject to higher lateral loads due to wind and earthquakes than CLT buildings which have already been completed. The lack of structural design codes and limited literature regarding the performance of CLT buildings under lateral loading are barriers to the adoption of CLT for buildings which could experience high lateral loading. Previous research into the behaviour of CLT buildings under lateral loading has involved testing of building components. These studies have generally been limited to testing wall systems and connections which replicate configurations at ground floor storeys in buildings no taller than three storeys. Consequently, to develop the understanding of the performance of multi-storey CLT buildings under lateral loading, the performance of wall systems and connections which replicate conditions of those in above ground floor storeys in buildings taller than three storeys were experimentally investigated. The testing of typical CLT connections involved testing eighteen configurations under cyclic loading in shear and tension. The results of this experimental investigation highlighted the need for capacity-based design of CLT connections to prevent brittle failure. It was found that both hold down and angle bracket connections have strength and stiffness in shear and tension and by considering the strength of the connections in both directions, more economical design of CLT buildings could be achieved. The testing of CLT wall systems involved testing three CLT wall systems with identical configurations under monotonic lateral load and constant vertical load, with vertical loads replicating gravity loads at storeys within a 10-storey CLT building. The results show that vertical load has a significant influence on wall system behaviour; varying the vertical load was found to vary the contribution of deformation mechanisms to global behaviour within the elastic region, reinforcing the need to consider connection design at each individual storey. As there are still no structural design codes for CLT buildings, the accuracy of analytical methods presented within the literature for predicting the behaviour of CLT connections and wall systems under lateral loading was assessed. It was found that the analytical methods for both connections and wall systems are highly inaccurate and do not reflect experimentally observed behaviour.
Online Access
Free
Resource Link
Less detail

Braced Frame System for Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2527
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Author
Iqbal, Asif
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Topic
Design and Systems
Seismic
Keywords
Lateral Load Resisting Systems
Sustainability
Post-Tensioned
Connections
Braced Frame Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Online Access
Free
Resource Link
Less detail

Comparison of the Seismic Performance of Different Hybrid Timber-Steel Frame Configurations

https://research.thinkwood.com/en/permalink/catalogue1775
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Hybrid Building Systems
Shear Walls
Author
Marin, Jose Alberto
He, Minjuan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Application
Hybrid Building Systems
Shear Walls
Topic
Seismic
Design and Systems
Keywords
Finite Element Model
Timber-Steel Hybrid
Deformation
Lateral Loading
Abaqus
Displacement
Inter-Story Drift
Diaphragm
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5401-5408
Summary
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Construction for Resisting Lateral Loads on Six Level Buildings

https://research.thinkwood.com/en/permalink/catalogue1846
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Wood Building Systems
Author
Chapman, John
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Wood Building Systems
Topic
Design and Systems
Keywords
Resistance
Lateral Load
Stress
Serviceability
Shear
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Shear Connections with Double-Angled Self-Tapping Screw Assemblies

https://research.thinkwood.com/en/permalink/catalogue544
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hossain, Afrin
Danzig, Ilana
Tannert, Thomas
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Shear Resistance Performance
Shear Connection
Quasi-Static
Reverse Cyclic Loading
Lateral Load
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
The research presented in this paper examines the shear resistance performance of self-tapping screws (STS) in three-ply cross-laminated timber (CLT) panels. Specifically, the feasibility of using innovative STS assemblies with double inclination of fasteners was investigated for the shear connection of CLT panels. The specimens (1.5×1.5 m) were subjected to quasi-static and reversed-cyclic loading. The tests were set up to approximate pure shear loading, with three-panel CLT assemblies connected with STS. The resulting load-displacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve to estimate assembly capacity, yield load, yield displacement, ductility ratio, stiffness, and damping. Excellent structural performance in terms of capacity and stiffness was obtained while still providing the required ductility for the system to be used in seismic applications. The average static and cyclic yield loads were 6.0 kN/screw and 5.9 kN/screw, respectively. Average static and cyclic and ductility ratios were 7.7 and 4.1, respectively, allowing the connection to be classified as highly ductile under quasi-static loading and moderately ductile under reversed cyclic loading. The data obtained allow engineers to specify an innovative connection assembly with double inclination of fasteners for lateral load–resisting systems of CLT structures.
Online Access
Free
Resource Link
Less detail

Deflection of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1974
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Design and Performance of High-Rise Structure using Ultra-Lightweight Cross Laminated Timber Floor System

https://research.thinkwood.com/en/permalink/catalogue2698
Year of Publication
2020
Topic
Mechanical Properties
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ahmed, Danish
Ayadat, Tahar
Asiz, Andi
Publisher
ISEC Press
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Serviceability
Keywords
Tall Timber Buildings
Lateral Load
Lateral Deflections
Floor Diaphragm
Language
English
Conference
International Structural Engineering and Construction Conference
Research Status
Complete
Series
Proceedings of International Structural Engineering and Construction
Summary
The main objective of this paper is to study the structural performance of a high-rise structure when alternative lightweight material known as cross-laminated timber was used as a slab in floor system in lieu of conventional reinforced concrete slab. A numerical case study was conducted using a highly irregular RC frame building with its two 60-story towers joined at the top. Three major analyses were considered. First, modeling and analyzing the building with an RC slab was conducted to determine the design reference. Second, substituting the RC slab with the CLT slab was performed using the same building skeleton. Third, redesigning and optimizing the building skeleton with that CLT to observe skeleton material saving obtained using the same structural performance criteria. Major lateral loads applicable in the Eastern Province of Saudi Arabia were inputted. Strengths and serviceability requirements for floor diaphragm and lateral load resisting system were checked first before performing a comparative analysis between traditional RC and CLT slabs as floor diaphragm. The structural performance criteria to be used for comparative study between RC and CLT slabs included total drift, inter-story drift due to lateral loads, and base reactions. Structural periods and acceleration responses for each floor were investigated and contrasted with the existing building code. The foundation demand was also investigated based on the structural weight and reactions generated from the RC and CLT floor systems.
Online Access
Free
Resource Link
Less detail

Design of Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue294
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2015
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Multi-Storey
Commercial
Lateral Loads
Equivalent Truss Method
Lateral Load Resisting System
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 10-12, 2015, Rotorua, New Zealand
Summary
This paper discusses the design of timber diaphragms, in response to the growing interest in multi-storey commercial timber structures, and the lack of guidance or regulations regarding the seismic design of timber diaphragms. Proper performance of floor diaphragms is required to transfer all lateral loads to the vertical systems that resist them, but design for earthquake loads can be more complex than design for wind loads. This paper confirms that the seismic design of a diaphragm is intimately linked to the seismic design of the whole building. Diaphragm failure, even if restricted to a limited diaphragm portion, can compromise the behaviour of the whole building. It is therefore necessary to design and detail diaphragms for all possible load paths and to evaluate their influence on the load distribution within the rest of the structure. It is strongly recommended that timber diaphragms be designed as elastic elements, by applying dynamic amplification and overstrength factors derived from the lateral load resisting system. This paper shows that some current design recommendations for plywood sheathing on light timber framing can be applied to massive wood diaphragms, but for more complex floor geometries an equivalent truss method is suggested. Diaphragm flexibility and displacement incompatibilities between the floor diaphragms and the lateral resisting systems also need to be accounted for.
Online Access
Free
Resource Link
Less detail

39 records – page 1 of 4.