Skip header and navigation

2 records – page 1 of 1.

Combination of laser scanner and drilling resistance tests to measure geometry change for structural assessment of timber beams exposed to fire

https://research.thinkwood.com/en/permalink/catalogue3057
Year of Publication
2021
Topic
Fire
Application
Beams
Author
Cabaleiro, Manuel
Suñer, Carlos
Sousa, Hélder S.
Branco, Jorge M.
Organization
University of Vigo
University of Minho
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Beams
Topic
Fire
Keywords
Drilling Resistance Test
Structural Assessment
Laser Scanning
Cloud Point
Research Status
Complete
Series
Journal of Building Engineering
Summary
A structure may be totally destroyed due to a fire, but often it is only partially damaged and parts of it may still be salvaged and reused. For buildings with significant historic and cultural value, it is of utmost importance that these elements, which were only partially damaged, can still be recovered as to preserve the authenticity of the structure. In the case of timber elements after a fire, it is common to find damage on the cross-section exterior part, whereas the inner part presents still a non-damaged section. Therefore, the element is often found with an exterior irregular shape, either due to its original shape prior decay or due to the exposure to fire, that does not coincide with the inner residual cross-section. Moreover, it is essential to perform a preliminary safety analysis to verify which elements can be preserved and to what extent interventions could be needed. The objective of this work is to apply a methodology that allows to calculate the residual cross-section of partially burnt timber elements structures as to calculate the resistant and apparent sections for geometry assessment and to implement that information in three-dimensional structural models. For this purpose, this work proposes a methodology based on a combination of drilling resistance tests together with laser scanner measurements. The methodology was first tested and calibrated within a controlled laboratory environment and then validated onsite using elements from a building exposed to a past fire. The Casa de Sarmento (Sarmento's House) in Guimarães (Portugal) was used as case study, where various structural damages due to a past fire were found.
Online Access
Free
Resource Link
Less detail

Identification of Weak Sections in Glulam Beams using Calculated Stiffness Profiles based on Lamination Surface Scanning

https://research.thinkwood.com/en/permalink/catalogue196
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Oscarsson, Jan
Serrano, Erik
Olsson, Anders
Enquist, Bertil
Year of Publication
2014
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Strength
Failure
Modulus of Elasticity
Laser Scanning
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Models for estimation of structural properties of glued laminated timber (glulam) are generally based on the relationship between properties of the individual laminations and properties of the glulam. In this investigation, a recently presented machine strength grading method based on laser scanning of fibre direction fields was applied for determination of axial modulus of elasticity (MOE) profiles along glulam laminations. These profiles were then used to calculate edgewise bending MOE (EB) profiles of glulam beams. The objectives were to investigate the relationship between position of bending failure and position of lowest EB value along investigated beams, and the relationship between the mentioned EB value and bending strength of the beams. It was found that both relationships were rather weak, whereas local bending MOE determined in accordance with EN 408 was predicted with high accuracy on the basis of EB profiles.
Online Access
Free
Resource Link
Less detail