Skip header and navigation

3 records – page 1 of 1.

High Performance CFRP-Timber-Concrete Laminated Composite Members

https://research.thinkwood.com/en/permalink/catalogue1698
Year of Publication
2016
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Balogh, Jeno
Year of Publication
2016
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Loading
Short-term
Laboratory Tests
Finite Element Model
Tension
CFRP
Failure Mode
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4352-4359
Summary
This paper deals with laminated timber-concrete (LTC) composite beam members, for applications in sustainable building structures, in which the interlayer connection is achieved with adhesives, similarly to the glued laminated timber beams, instead of the classically used shear connectors (e.g. mechanical connectors or notches). Only a small number of studies of this type of high-performance members are available. The strength and stiffness of the LTC under short-term static ramp-loading were studied on new and retrofit (joist-type) floor members, through laboratory tests and non-linear finite element modelling. In the initial tests the typical failure mode observed was the failure of the wood in tension. Consequently, a carbon fibre reinforced polymer (CFRP) layer was added to the tension side of the timber layer, forming a multi-composite member. The research results indicate that the structural performance in terms of efficiencies and strength for the LTC beams exceeds the corresponding performance of similar classical timber-concrete beams with shear connectors due to the different shear transfer and failure modes. By adding the CFRP reinforcement to the tension fibres of the timber layer, the failure mode changed again, allowing for further increase in strength and stiffness.
Online Access
Free
Resource Link
Less detail

Numerical Analysis and Its Laboratory Verification in Bending Test of Glue Laminated Timber Pre-Cracked Beam

https://research.thinkwood.com/en/permalink/catalogue2426
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Vibrational Behaviour of Cross Laminated Timber Floors in Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue1738
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Zimmer, Severin
Augustin, Manfred
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Boundary Conditions
Serviceability Limit State
Elastomers
Frequency
In Situ
Laboratory Tests
Residential
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4835-4844
Summary
This paper will discuss the relevancy of different boundary conditions that relates to the dynamic behaviour of CLT floors to show the opportunities of adopting the findings for the verification of the serviceability limit state. Based on a literature research and measurements in the laboratory and in situ in different objects the evaluated boundary conditions are different static systems, supporting conditions, non-load bearing internal walls, flexible carriers, joints between CLT elements, elastomers and floor constructions. Furthermore a theoretical investigation on the low frequency behaviour of floating screeds was conducted. Abstracted from the results it can be stated that elastomers can generally be neglected in their influence on low frequency vibration modes except when the partial clamping due to the load of superimposed storeys at the supports should be taken into account. The effect of partial clamping on low frequency vibration can be calculated adequately but is lowered if elastomers are used to improve the building physics. A big influence was observed at non-load bearing internal walls as they are able to change the eigenmodes of a floor into ones with higher frequency. Overall the laboratory measurements agreed well with the analytic solutions while differences in comparison of calculations with in situ measurements rise with the complexity of the boundary conditions.
Online Access
Free
Resource Link
Less detail