Skip header and navigation

39 records – page 1 of 4.

Acoustical Guide: Acoustic Research Report on Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1839
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Floors

Acoustical Performance of Mass Timber Building Elements

https://research.thinkwood.com/en/permalink/catalogue2553
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Acoustic Membrane
Acoustical Performance
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
Less detail

Acoustic Performance of Timber and Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue684
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Schluessel, Marc
Shrestha, Rijun
Crews, Keith
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Keywords
New Zealand
Australia
Building Code of Australia
Sound Insulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
Online Access
Free
Resource Link
Less detail

Acoustics: Sound Insulation in Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue37
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Author
Schoenwald, Stefan
Zeitler, Berndt
King, Frances
Sabourin, Ivan
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics
Mid-Rise
Sound Insulation
Language
English
Research Status
Complete
Summary
This client report on the acoustics research component regarding sound insulation of elements and systems for mid-rise wood buildings is structured into a main part and four appendices. The main part outlines the background, main research considerations and summarizes conducted research and major outcomes briefly. It is structured like the Acoustics tasks in the Statement of Work of the Mid-rise Wood research project to identify accomplishments. For details on the research, testing and results, the main part references to four appendices that contain more details including test plans, test methods, specimen descriptions and all test data that is vetted so far.
Online Access
Free
Resource Link
Less detail

Acoustics Summary: Sound Insulation in Mid-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue750
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Schoenwald, Stefan
Zeitler, Berndt
King, Frances
Sabourin, Ivan
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Mid-Rise
Sound Insulation
Impact Sound Transmission
Airborne Sound Transmission
Language
English
Research Status
Complete
Summary
This report summarizes the acoustics research component regarding sound insulation of elements and systems for the research project on mid-rise and larger wood buildings. The summary outlines the background, main research considerations, research conducted and major outcomes. Further details of the design and the results can found in the appendix of Client Report A1-100035-02.1 [1]. The goal of the acoustics research components was to develop design solutions for mid-rise wood and wood-hybrid buildings that comply both with the current National Building Code of Canada (NBCC) 2010 [2] requirements for direct sound insulation and with the anticipated requirements for flanking sound transmission in the proposed, 2015 version of the NBCC. In addition, the design solutions were to provide better impact sound insulation while still achieving code compliance for all other disciplines (interdependencies) as identified in the final report of the scoping study conducted in FY 2010/2011 [3]
Online Access
Free
Resource Link
Less detail

Addendum to RR-335: Sound Transmission Through Nail-Laminated Timber (NLT) Assemblies

https://research.thinkwood.com/en/permalink/catalogue1868
Year of Publication
2018
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Floors
Walls

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of The Arbora Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1179
Year of Publication
2018
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Sound Insulation
Tall Wood
Vibration Performance
Mid-Rise
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on vibration and sound insulation performance. The sound insulation and vibration performance may not affect building's safety, but affects occupants' comfort and proper operation of the buildings and the funciton of sensitive equipment, consequently the acceptance of midrise and tall wood buildings in market place. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Air-Borne Sound Transmission through Triple-Leaf Walls

https://research.thinkwood.com/en/permalink/catalogue2235
Year of Publication
2015
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Walls
Author
Eslami, Armin
Organization
Carleton University
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
Light Frame (Lumber+Panels)
Application
Walls
Topic
Acoustics and Vibration
Keywords
Mid-Rise
Airborne Sound
Model
Sound Transmission
Sound Insulation
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Analysis on Structureborne Sound Transmission at Junctions of Solid Wood Double Walls with Continuous Floors

https://research.thinkwood.com/en/permalink/catalogue1869
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

39 records – page 1 of 4.