Skip header and navigation

9 records – page 1 of 1.

Cross Laminated Timber at In-Plane Beam Loading - Comparison of Model Predictions and FE-Analyses

https://research.thinkwood.com/en/permalink/catalogue2122
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Danielsson, Henrik
Jelec, Mario
Serrano, Erik
Rajcic, Vlatka
Publisher
Elsevier
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
In-Plane Loading
FE Analysis
Shear Mode III
Language
English
Research Status
Complete
Series
Engineering Structures
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber at In-Plane Beam Loading – Prediction of Shear Stresses in Crossing Areas

https://research.thinkwood.com/en/permalink/catalogue1305
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Danielsson, Henrik
Serrano, Erik
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
In-Plane Loading
Eurocode 5
Strength
Shear Stress
Crossing Areas
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
Cross Laminated Timber (CLT) at in-plane beam loading conditions present a very complex stress state and many failure modes need to be considered in design. The work presented here aims at finding improvements of a specific analytical model for stress analysis and strength verification that has been suggested in literature and which is also suggested as a basis for design equations for the next version of Eurocode 5. Although the model has appealing properties it suffers from some drawbacks related to the assumed distributions of internal forces which, based on comparison to finite element analysis, appear to be inaccurate. The main focus in this paper is on model predictions regarding the distribution and magnitude of internal forces acting in the crossing areas between longitudinal and transversal laminations. The proposed modified model assumptions regarding the distribution of lamination shear forces, which in turn influence the forces acting in the crossing areas, are suggested to be taken into account in design of CLT beams.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber (CLT) Beams Loaded in Plane: Testing Stiffness and Shear Strength

https://research.thinkwood.com/en/permalink/catalogue2136
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Beams

Experimental Study on Loading Capacity of Glued-Laminated Timber Arches Subjected to Vertical Concentrated Loads

https://research.thinkwood.com/en/permalink/catalogue2581
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Author
Zhou, Jiale
Chuanxi, Li
Ke, Lu
He, Jun
Wang, Zhifeng
Publisher
Hindawi
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Topic
Design and Systems
Keywords
In-Plane Loading
Capacity
Douglas-Fir
Model
Failure Modes
Language
English
Research Status
Complete
Series
Advances in Civil Engineering
Summary
Glued-laminated timber arches are widely used in gymnasiums, bridges, and roof trusses. However, studies on their mechanical behaviours and design methods are still insufficient. This paper investigates the in-plane loading capacity of circular glued-laminated timber arches made of Douglas fir. Experiments were conducted on four timber-arch models with different rise-to-span ratios under concentrated loads at mid-span and quarter-point locations. The structural responses, failure modes, and loading capacity of the timber arch specimens were obtained. The results show that the timber arches presented symmetric and antisymmetric deformation under mid-point and quarter-point loading conditions, respectively. The downward shifting of the neutral axis of the cross section was observed under mid-point loading condition, which contributes to higher loading capacity compared to that under quarter-point loading condition. The loading condition significantly affects the ultimate loads and the strain distribution in the cross section. Based on the design formula in current standards for timber structures, an equivalent beam-column method was introduced to estimate the loading capacity of the laminated timber arches under vertical concentrated loads. The moment amplification factor in the formula was compared and discussed, and the value provided in the National Design Specification for Wood Construction was recommended with acceptable accuracy.
Online Access
Free
Resource Link
Less detail

In-Plane Loaded CLT Beams – Tests and Analysis of Element Lay-Up

https://research.thinkwood.com/en/permalink/catalogue2234
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

In-Plane Stiffness of CLT Panels With and Without Openings

https://research.thinkwood.com/en/permalink/catalogue1668
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
In-Plane Loading
Finite Element Analysis
Elastic Stiffness
Openings
Thickness
Aspect Ratios
Analytical Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3813-3820
Summary
The research presented in this paper analysed the stiffness of Cross-Laminated-Timber (CLT) panels under in-plane loading. Finite element analysis (FEA) of CLT walls was conducted. The wood lamellas were modelled as an orthotropic elastic material, while the glue-line between lamellas were modelled using non-linear contact elements. The FEA was verified with test results of CLT panels under in-plane loading and proved sufficiently accurate in predicting the elastic stiffness of the CLT panels. A parametric study was performed to evaluate the change in stiffness of CLT walls with and without openings. The variables for the parametric study were the wall thickness, the aspect ratios of the walls, the size and shape of the openings, and the aspect ratios of the openings. Based on the results, an analytical model was proposed to calculate the in-plane stiffness of CLT walls with openings more accurately than previously available models from the literature.
Online Access
Free
Resource Link
Less detail

Strength and Stiffness of Cross Laminated Timber at In-Plane Beam Loading

https://research.thinkwood.com/en/permalink/catalogue2233
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

Structural Analysis of In-Plane Loaded CLT Beams

https://research.thinkwood.com/en/permalink/catalogue1213
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Jelec, Mario
Strukar, Kristina
Rajcic, Vlatka
Organization
University of Osijek
Year of Publication
2017
Country of Publication
Croatia
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
In-Plane Loading
Shear Stress
Failure Modes
FE Analysis
Eurocode 5
Language
English
Research Status
Complete
Series
e-GFOS
ISSN
1847-8948
Summary
Cross laminated timber (CLT) is a versatile engineered timber product that is increasingly well-known and of global interest in several applications such as full size plane or linear timber elements. The aim of this study involves investigating the performance of CLT beams loaded in-plane by considering bending and shear stress analysis with a special emphasis on the in-plane shear behavior including the complex internal structure of CLT. Numerical analysis based on 3D-FE models was used and compared with two existing analytical approaches, namely representative volume sub element (method I) and composite beam theory (method II). The separate verification of bending and shear stresses including tree different shear failure modes was performed, and a good agreement was obtained. The main difference between the results relates to shear failure mode in the crossing areas between the orthogonally bonded lamellas in which the distribution of shear stresses tzx over the crossing areas per height of the CLT beam is not in accordance with the analytical assumptions. The presented analyses constitute the first attempt to contribute to the on-going review process of Eurocode 5 with respect to CLT beams loaded-in plane. Currently, regulations on designing these types of beams do not exist, and thus experimental and numerical investigations are planned in the future.
Online Access
Free
Resource Link
Less detail

Structural Analysis of In-Plane Loaded CLT Beam with Holes: FE-Analyses and Parameter Studies

https://research.thinkwood.com/en/permalink/catalogue2236
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

9 records – page 1 of 1.