Skip header and navigation

2 records – page 1 of 1.

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane stiffness and strength of CLT shearwalls. The research presented in this paper investigated the in-plane stiffness and strength of CLT shearwalls with different connections for platform-type construction. Finite element analyses were conducted where the CLT panels were modelled as an orthotropic elastic material, and non-linear springs were used for the connections. The hysteretic behaviour of the connections under cyclic loading was calibrated from quasi-static tests; the full model of wall assemblies was calibrated using experimental tests on CLT shearwalls. A parametric study was conducted that evaluated the change of strength and stiffness of walls with the change in a number of connectors. Finally, a capacity-based design procedure is proposed that provides engineers with guidance for designing platform-type CLT buildings. The philosophy of the procedure is to design the CLT buildings such that all non-linear deformations and energy dissipation occurs in designated connections, while all other connections and the CLT panels are designed with sufficient over-strength to remain linear elastic.
Online Access
Payment Required
Resource Link
Less detail

Investigation into the Hysteretic Performance of Self-Centering Timber Beam-to-Column Joints

https://research.thinkwood.com/en/permalink/catalogue1562
Year of Publication
2016
Material
Glulam (Glue-Laminated Timber)
Author
Wang, Kangli
Li, Zheng
He, Minjuan
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Keywords
China
Post-Tensioned
Self-Centering
Energy Dissipation
Joint
Cyclic Loading Tests
Hysteretic Behaviour
Moment-Resisting Capacity
Failure Mechanism
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1540-1547
Summary
The seismic performance of a post-tensioned (PT) energy dissipating beam-to-column joint for glulam heavy timber structure is investigated in this paper. Such connection incorporates post-tensioned high-strength strand to provide self-centering capacity along with energy dissipating produced by a special steel cap, which is attached with the timber beam and also to prevent the end bearing failure of wood. The moment-rotation behaviour of the proposed posttensioned timber joint was investigated through a series of cyclic loading tests. The timber joint was loaded at the end of the beams to produce a moment at the joint, and the tests were conducted with three different post-tension forces in the steel strand. The hysteretic behaviour and self-centering capacity of the joint are evaluated based on the results from cyclic loading tests. The failure mechanism of the joint was illustrated through test observations, and the momentresisting capacity and energy dissipation of the joint were analysed with regard to various drift level. This research aims to provide possible solutions to minimize the residual deformation of heavy timber structure made of glulam in China.
Online Access
Free
Resource Link
Less detail