Skip header and navigation

4 records – page 1 of 1.

Leveraging Structural Health Monitoring Data Through Avatars to Extend the Service Life of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue3085
Year of Publication
2022
Author
Riggio, Mariapaola
Mrissa, Michael
Krész, Miklós
Vcelák, Jan
Sandak, Jakub
Sandak, Anna
Organization
Oregon State University
University of Primorska
University of Szeged
Czech Technical University in Prague
Year of Publication
2022
Format
Journal Article
Keywords
Mass Timber Building
Hygrothermal Monitoring
Avatars
Microclimate Data
Mold Risk Models
Research Status
Complete
Series
Frontiers in Built Environment
Summary
Mass timber construction systems, incorporating engineered wood products as structural elements, are gaining acceptance as a sustainable alternative to multi-story concrete or steel-frame structures. The relative novelty of these systems brings uncertainties on whether these buildings perform long-term as expected. Consequently, several structural health monitoring (SHM) projects have recently emerged to document their behavior. A wide and systematic use of this data by the mass timber industry is currently hindered by limitations of SHM programs. These limitations include scalability, difficulty of data integration, diverse strategies for data collection, scarcity of relevant data, complexity of data analysis, and limited usability of predictive tools. This perspective paper envisions the use of avatars as a Web-based layer on top of sensing devices to support SHM data and protocol interoperability, analysis, and reasoning capability and to improve life cycle management of mass timber buildings. The proposed approach supports robustness, high level and large-scale interoperability and data processing by leveraging the Web protocol stack, overcoming many limitations of conventional centralized SHM systems. The design of avatars is applied in an exemplary scenario of hygrothermal data reconstruction, and use of this data to compare different mold growth prediction models. The proposed approach demonstrates the ability of avatars to efficiently filter and enrich data from heterogeneous sensors, thus overcoming problems due to data gaps or insufficient spatial distribution of sensors. In addition, the designed avatars can provide prediction or reasoning capability about the building, thus acting as a digital twin solution to support building lifecycle management.
Online Access
Free
Resource Link
Less detail

A Methodological Approach for Structural Health Monitoring of Mass-Timber Buildings Under Construction

https://research.thinkwood.com/en/permalink/catalogue2519
Year of Publication
2020
Topic
Serviceability
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems

Moisture Monitoring Data of Mass Timber Elements During Prolonged Construction Exposure: The Case of the Forest Science Complex (Peavy Hall) at Oregon State University

https://research.thinkwood.com/en/permalink/catalogue2212
Year of Publication
2019
Topic
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Monitoring Moisture Performance of Cross-Laminated Timber Building Elements during Construction

https://research.thinkwood.com/en/permalink/catalogue2102
Year of Publication
2019
Topic
Site Construction Management
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Schmidt, Evan
Riggio, Mariapaola
Publisher
MDPI
Year of Publication
2019
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Site Construction Management
Moisture
Keywords
Hygrothermal Monitoring
Sensors
Moisture Distribution
Wetting
Drying Rate
Construction
Research Status
Complete
Series
Buildings
Summary
There are currently no standards regulating water management for mass timber elements during construction, little knowledge of impacts of moisture exposure (wetting and drying performance, dimensional stability, checking), and few precedents serving as guidelines for monitoring moisture response of mass timber. To address these gaps, a hygrothermal monitoring study was devised to track moisture performance of U.S. made cross laminated timber (CLT) and glulam at a three-story mass timber building. This paper discusses moisture measurements that were collected during the first six months of construction at a CLT rocking shear wall and a timber floor connection. Despite the limited number of structural systems monitored during construction, the distribution and number of sensors in these elements allow to draw some important conclusions. The data confirmed that moisture distribution and wetting/drying rates varied based on local conditions and details (aspect, coatings, connections, etc.), with measurements at an uncoated, north-facing area showing the highest moisture levels (reaching fiber saturation at multiple ply depths and locations). Most locations rarely exceeded 16% moisture content for more than a few months. Certain moisture-trapping details consistently showed higher moisture levels (i.e., above 16%) and poorer drying. Some interior plies continued to show slow increases in MC even after months of drying conditions. These observations suggest preventative approaches implementable in the design (e.g., avoiding moisture trapping details), during fabrication (e.g., localized coating), and construction (e.g., sequencing installation to minimize exposure and allow drying).
Online Access
Free
Resource Link
Less detail