Skip header and navigation

39 records – page 1 of 4.

Benchmarking of the Advanced Hygrothermal Model HygIRC – Large Scale Drying Experiment of the Mid-Rise Wood Frame Assembly

https://research.thinkwood.com/en/permalink/catalogue349
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Climatological Analysis for Hygrothermal Performance Evaluation: Mid-Rise Wood

https://research.thinkwood.com/en/permalink/catalogue755
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Effect of Moisture Induced Stresses on the Mechanical Performance of Glulam Beams of Vihantasalmi Bridge

https://research.thinkwood.com/en/permalink/catalogue1609
Year of Publication
2016
Topic
Moisture
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Hradil, Petr
Fortino, Stefania
Salokangas, Lauri
Musci, Alessandro
Metelli, Giovanni
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Moisture
Serviceability
Keywords
Moisture Induced Stresses
Finland
Moisture Gradients
Moisture Content
Hygrothermal
Multi-Fickian Theory
Relative Humidity
Temperature
Eurocode 5
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2159-2167
Summary
The present paper deals with the effect of moisture induced stresses (MIS) on the mechanical performance of a glulam beam of Vihantasalmi Bridge in Finland. MIS caused by high moisture gradients in a cross section of the glulam beam are calculated by a hygro-thermal multi-Fickian model for evaluation of moisture content, relative humidity and temperature in wood that is...
Online Access
Free
Resource Link
Less detail

Effects of Climate Change on the Moisture Performance of Tallwood Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2771
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Author
Defo, Maurice
Lacasse, Michael
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Topic
Moisture
Keywords
Climate Change
Hygrothermal Simulations
Moisture Performance
Durability
Mold Growth Risk
Language
English
Research Status
Complete
Series
Buildings
Summary
The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of massive timber walls on the basis of results derived from hygrothermal simulations. One-dimensional simulations were run using DELPHIN 5.9.4 for 31 consecutive years of the 15 realizations of the modeled historical (1986–2016) and future (2062–2092) climates of five cities located across Canada. For all cities, water penetration in the wall assembly was assumed to be 1% wind-driven rain, and the air changes per hour in the drainage cavity was assumed to be 10. The mold growth index on the outer layer of the cross-laminated timber panel was used to compare the moisture performance for the historical and future periods. The simulation results showed that the risk of mold growth would increase in all the cities considered. However, the relative change varied from city to city. In the cities of Ottawa, Calgary and Winnipeg, the relative change in the mold growth index was higher than in the cities of Vancouver and St. John’s. For Vancouver and St. John’s, and under the assumptions used for these simulations, the risk was already higher under the historical period. This means that the mass timber walls in these two cities could not withstand a water penetration rate of 1% wind-driven rain, as used in the simulations, with a drainage cavity of 19 mm and an air changes per hour value of 10. Additional wall designs will be explored in respect to the moisture performance, and the results of these studies will be reported in a future publication. View Full-Text
Online Access
Free
Resource Link
Less detail

Environmental Response of a CLT Floor Panel: Lessons for Moisture Management and Monitoring of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2161
Year of Publication
2018
Topic
Site Construction Management
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Floors

Evaluating Hygrothermal Performance of Interlocking Cross-Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue804
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Smith, Ryan
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Moisture
Keywords
Climate
Building Envelope
Hygrothermal Performance
US
Interlocking CLT
Moisture
Research Status
In Progress
Summary
Unlike other solid wood panel systems, ICLT panels are manufactured without the use of adhesives or fasteners. Wood members are connected with tongue-andgroove joints within a given layer and with dovetail joints across layers. This reduces cost and allo...
Resource Link
Less detail

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2471
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber: Final Report — Part 1 of 2

https://research.thinkwood.com/en/permalink/catalogue2502
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems

Evaluation of Fire-Retardant Treated Structural Glued Laminated Timber: Final Report - Part 2 of 2

https://research.thinkwood.com/en/permalink/catalogue2590
Year of Publication
2020
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Author
Yeh, Borjen
Chen, Jessie
Zelinka, Sam
Organization
APA – The Engineered Wood Association
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Keywords
Fire-Retardant-Treatment (FRT)
Hygrothermal
Structural
Language
English
Research Status
Complete
Summary
This report contains test results for the fire-retardant-treatment (FRT) and hygrothermal effects on structural glued laminated timber (glulam). This is the second part of the collaborative research project between ABA - The Engineered Wood Association, Tacoma, WA, and USDA Forest Products Laboratory (FPL), Madison, WI. The first part of this project is related to FRT laminated veneer lumber (LVL) and the results are provided in a separate research report. Selected mechanical properties, including tension, bending, and shear of the FRT glulam treated with the American Wood Protection ASsociation (AWPA) P49 and P50 fire retardants were evaluated in this study. These results are used to support the development of an ASTM standard for FRT glulam.
Online Access
Free
Resource Link
Less detail

Expanding the Cross-Laminated Timber Market through Building Moisture Monitoring and Improved Modeling

https://research.thinkwood.com/en/permalink/catalogue719
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Colorado School of Mines
Forest Products Laboratory
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Keywords
Moisture Content
Building Envelope
Climate
Hygrothermal Models
Long-term
Research Status
In Progress
Notes
Project contacts are Shiling Pei (Colorado School of Mines) and Samuel L. Zelinka (Forest Products Laboratory)
Summary
This project will generate three benchmark data sets for multistory CLT building moisture performance in different climate zones. Data will include moisture contents at key wood components and high moisture risk locations throughout the buildings. A relatively simple, but fully validated, numerical model for analyzing similar building moisture performance will be recommended. These results will be useful for structural engineers and architects to accurately consider moisture in their design of mass timber buildings.
Resource Link
Less detail

39 records – page 1 of 4.