Skip header and navigation

46 records – page 1 of 5.

Assessment of effect of climate change on hygrothermal performance of cross-laminated timber building envelope with modular construction

https://research.thinkwood.com/en/permalink/catalogue2890
Year of Publication
2021
Topic
Moisture
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Chang, Seong Jin
Kang, Yujin
Yun, Beom Yeol
Yang, Sungwoong
Kim, Sumin
Organization
Gyeongsang National University
Yonsei University
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Serviceability
Keywords
Climate Change
Modular Construction
Hygrothermal Performance
Mock-up Experiments
Research Status
Complete
Series
Case Studies in Thermal Engineering
Summary
Cross-laminated timber (CLT) modular construction possesses the advantages of wood, such as excellent carbon storage and thermal insulation, and of modular construction, such as considerably reduced construction period and cost as well as high productivity. This study evaluates the hygrothermal performance of CLT walls considering modular construction in future climatic conditions. Firstly, CLT walls with plywood applied to a core layer were manufactured. A mock-up of a CLT building was produced and its construction process was analyzed. Hygrothermal behavior of the CLT walls was simulated using WUFI simulation program, and the predicted results were verified against measurements obtained from the mock-up experiment. Finally, the hygrothermal performance of the CLT wall was evaluated for four types of insulation and future climate in eight cities of USA. The coefficient of variation—root mean square error (CV(RMSE))—of the temperature and relative humidity inside the ply-lam CLT wall from mock-up experiments and simulation evaluation were 6.43% and 7.02%, respectively, which met the validation criteria. Based on the hygrothermal performance, the ply-lam CLT wall with extruded polystyrene insulation was evaluated as safe from moisture problems in all the eight cities considered in this study. However, the risk of mold growth in all regions and insulation types increased under climate change with a rise of average annual temperature.
Online Access
Free
Resource Link
Less detail

Benchmarking of the Advanced Hygrothermal Model HygIRC – Large Scale Drying Experiment of the Mid-Rise Wood Frame Assembly

https://research.thinkwood.com/en/permalink/catalogue349
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Maref, Wahid
Saber, Hamed
Ganapathy, Gnanamurugan
Abdulghani, Khaled
Nicholls, Mike
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Keywords
Drying Rate
Full Scale
Hygrothermal
Mid-Rise
Moisture Content
Construction Phase
Research Status
Complete
Summary
Recent research in the field of assessment of hygrothermal response has focused on either laboratory experimentation or modelling, but less work has been reported in which both aspects are combined. Such type of studies can potentially offer useful information regarding the benchmarking of models and related methods to assess hygrothermal performance of wall assemblies. This report documents the experimental results of a benchmark experiment that was designed to allow benchmarking of stud drying predicted by NRC’s an advanced hygrothermal computer model called hygIRC, when subjected to nominally steady-state environmental conditions. hygIRC uses hygrothermal properties of materials derived from tests on small-scale specimens undertaken in the laboratory. The drying rates of wall assembly featuring wet studs that result from moisture accumulated during the framing stage of a 5 or 6 storey building. The drying rate of those studs was assessed in an experiment undertaken in a controlled laboratory setting. The results were subsequently used to help benchmark hygIRC reported under separate cover.
Online Access
Free
Resource Link
Less detail

Climatological Analysis for Hygrothermal Performance Evaluation: Mid-Rise Wood

https://research.thinkwood.com/en/permalink/catalogue755
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Cornick, Steve
Swinton, Michael
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Moisture
Keywords
Climate
Hygrothermal
Mid-Rise
Moisture Content
National Building Code of Canada
Water Penetration
Research Status
Complete
Summary
The objective of the task is to select, from the 679 locations in Table C-2 of the 2010 National Building Code of Canada (NBC 2010), several representative locations for which long-term historical weather data exists. This information from these locations can subsequently be used to determine the exterior boundary conditions for input files for hygrothermal simulation programs and hygrothermal testing in the laboratory. This report discusses the selection of locations for the hygrothermal simulation task of the project on Mid-rise Wood Buildings and the determination of spray-rates and pressure differentials for the water penetration testing portion of the project.
Online Access
Free
Resource Link
Less detail

Effect of Moisture Induced Stresses on the Mechanical Performance of Glulam Beams of Vihantasalmi Bridge

https://research.thinkwood.com/en/permalink/catalogue1609
Year of Publication
2016
Topic
Moisture
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Hradil, Petr
Fortino, Stefania
Salokangas, Lauri
Musci, Alessandro
Metelli, Giovanni
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Moisture
Serviceability
Keywords
Moisture Induced Stresses
Finland
Moisture Gradients
Moisture Content
Hygrothermal
Multi-Fickian Theory
Relative Humidity
Temperature
Eurocode 5
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2159-2167
Summary
The present paper deals with the effect of moisture induced stresses (MIS) on the mechanical performance of a glulam beam of Vihantasalmi Bridge in Finland. MIS caused by high moisture gradients in a cross section of the glulam beam are calculated by a hygro-thermal multi-Fickian model for evaluation of moisture content, relative humidity and temperature in wood that is sequentially coupled with an orthotropic-viscoelasticmechanosorptive model for calculation of wood stresses. Both models, already developed in Abaqus FEM code by some of the authors in their previous works, had to be modified for the Nordic climate. The obtained levels of MIS are then compared to the Eurocode 5 design resistances. The study aims at providing suggestions to future developments of Eurocode 5 for the correct evaluation of the influence of moisture content on service life in timber bridge elements.
Online Access
Free
Resource Link
Less detail

Effects of Climate Change on the Moisture Performance of Tallwood Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2771
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Author
Defo, Maurice
Lacasse, Michael
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Topic
Moisture
Keywords
Climate Change
Hygrothermal Simulations
Moisture Performance
Durability
Mold Growth Risk
Research Status
Complete
Series
Buildings
Summary
The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of massive timber walls on the basis of results derived from hygrothermal simulations. One-dimensional simulations were run using DELPHIN 5.9.4 for 31 consecutive years of the 15 realizations of the modeled historical (1986–2016) and future (2062–2092) climates of five cities located across Canada. For all cities, water penetration in the wall assembly was assumed to be 1% wind-driven rain, and the air changes per hour in the drainage cavity was assumed to be 10. The mold growth index on the outer layer of the cross-laminated timber panel was used to compare the moisture performance for the historical and future periods. The simulation results showed that the risk of mold growth would increase in all the cities considered. However, the relative change varied from city to city. In the cities of Ottawa, Calgary and Winnipeg, the relative change in the mold growth index was higher than in the cities of Vancouver and St. John’s. For Vancouver and St. John’s, and under the assumptions used for these simulations, the risk was already higher under the historical period. This means that the mass timber walls in these two cities could not withstand a water penetration rate of 1% wind-driven rain, as used in the simulations, with a drainage cavity of 19 mm and an air changes per hour value of 10. Additional wall designs will be explored in respect to the moisture performance, and the results of these studies will be reported in a future publication. View Full-Text
Online Access
Free
Resource Link
Less detail

Environmental Response of a CLT Floor Panel: Lessons for Moisture Management and Monitoring of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2161
Year of Publication
2018
Topic
Site Construction Management
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Schmidt, Evan
Riggio, Mariapaola
Barbosa, André
Mugabo, Ignace
Organization
Oregon State University
Publisher
ScienceDirect
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Site Construction Management
Serviceability
Moisture
Keywords
Moisture
Hygrothermal Performance
On-Site
Research Status
Complete
Series
Building and Environment
Summary
Cross-laminated timber (CLT) is becoming increasingly adopted into North American construction, yet little is known about the impacts of environmental exposure (e.g., to rain during construction) on its long-term performance. The lack of protocols for on-site moisture protection in North America makes it a pressing matter to determine general moisture responses of this material in order to establish a behavioral baseline for practitioners and future researchers. A CLT floor panel sample was exposed to cycles of wetting and drying in an environmental chamber. During these cycles, physical and geometrical properties of the panel were monitored. Testing results indicate that discontinuities in the layup CLT affects the hygroscopic behavior of the product. While the panel showed high dimensional stability, it also exhibited checking, cupping, and interfacial shearing after cycling. Bending test results before and after cycling indicated a reduction of the structural capacity due to the weathering.
Online Access
Free
Resource Link
Less detail

Evaluating Hygrothermal Performance of Interlocking Cross-Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue804
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Smith, Ryan
Organization
Forest Products Laboratory
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Moisture
Keywords
Climate
Building Envelope
Hygrothermal Performance
US
Interlocking CLT
Moisture
Research Status
In Progress
Summary
Unlike other solid wood panel systems, ICLT panels are manufactured without the use of adhesives or fasteners. Wood members are connected with tongue-andgroove joints within a given layer and with dovetail joints across layers. This reduces cost and allows ICLT panels to be disassembled at end of life to be repurposed in the building material supply chain. In addition, ICLT panels provide a means to utilize lumber from trees killed by mountain pine beetle. Durability is critical for sustainable construction, and avoidance of moisture accumulation in wood structural members is essential for long-term performance. Little work has been done specifically on hygrothermal performance of massive timber construction. The objective of this research is to identify building envelope design and construction practices for robust hygrothermal performance of ICLT walls in multiple U.S. climates.
Resource Link
Less detail

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2471
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber: Final Report — Part 1 of 2

https://research.thinkwood.com/en/permalink/catalogue2502
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems

Evaluation of Fire-Retardant Treated Structural Glued Laminated Timber: Final Report - Part 2 of 2

https://research.thinkwood.com/en/permalink/catalogue2590
Year of Publication
2020
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Author
Yeh, Borjen
Chen, Jessie
Zelinka, Sam
Organization
APA – The Engineered Wood Association
Year of Publication
2020
Format
Report
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Keywords
Fire-Retardant-Treatment (FRT)
Hygrothermal
Structural
Research Status
Complete
Summary
This report contains test results for the fire-retardant-treatment (FRT) and hygrothermal effects on structural glued laminated timber (glulam). This is the second part of the collaborative research project between ABA - The Engineered Wood Association, Tacoma, WA, and USDA Forest Products Laboratory (FPL), Madison, WI. The first part of this project is related to FRT laminated veneer lumber (LVL) and the results are provided in a separate research report. Selected mechanical properties, including tension, bending, and shear of the FRT glulam treated with the American Wood Protection ASsociation (AWPA) P49 and P50 fire retardants were evaluated in this study. These results are used to support the development of an ASTM standard for FRT glulam.
Online Access
Free
Resource Link
Less detail

46 records – page 1 of 5.