Skip header and navigation

54 records – page 2 of 6.

Design and Probabilistic Analysis of Mid- and High-rise Wood Buildings Subjected to Earthquake Excitations

https://research.thinkwood.com/en/permalink/catalogue2522
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Yang, Shucheng
Publisher
Western University
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Mass Timber
Mid-Rise
High-Rise
Two-Degree-of-Freedom (2DOF)
Single-Degree-of-Freedom (SDOF)
Research Status
Complete
Summary
Mass timber products, such as the glulam or cross laminated timber (CLT), are less frequently used construction materials at present for mid-rise and high-rise buildings. The feasibility and possible advantages of applying timber materials for constructing mid- and high-rise buildings are under investigation. One of the issues that needs to be addressed for the use of heavy timber materials is the safety of such constructions under seismic excitations. To address this issue, the nonlinear inelastic seismic responses and capacity curves of a wood buildings must be assessed. For this, the 10-, 15- and 20-storey buildings are designed using heavy timber structural members considering the requirements stipulated in applicable Canadian design codes and standards. When considering the buildings under unidirectional ground motion, the structural capacity curves along the structural axes in the horizontal plane are identified using well accepted approaches such as the incremental dynamic analysis (IDA) and nonlinear static pushover analysis (NSPA). The capacity curve is used as the basis to develop equivalent nonlinear inelastic single-degree-of-freedom (SDOF) system. The equivalent SDOF system is then employed for the structural reliability. The results indicate that the estimated reliabilities of the designed timber buildings are similar to those of steel frame structures designed according to Canadian practice. To consider the effect of the bidirectional ground motions on the building responses and their seismic reliability, a procedure is proposed in develop the capacity surface based on the results from the IDA and NSPA. Also, a procedure is proposed to establish equivalent nonlinear inelastic two-degree-of-freedom (2DOF) system based on the capacity surface. The use of the equivalent 2DOF system largely simplifies the reliability analysis of the buildings under bidirectional ground motions. The analysis results indicate that the failure probabilities under bidirectional ground motions are about 3 to 8 times greater than those obtained under unidirectional ground motions. Therefore, the consideration of bidirectional ground motions in assessing the reliability of building under seismic ground motions can be important for seismic risk modeling and emergency preparedness.
Online Access
Free
Resource Link
Less detail

Developing a Large Span Timber-based Composite Floor System for Highrise Office Buildings

https://research.thinkwood.com/en/permalink/catalogue2549
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Topic
Design and Systems
Keywords
Large Span
Prefabrication
High-Rise
Office Buildings
Tall Timber Buildings
Research Status
In Progress
Notes
Project contact is Frank Lam at the University of British Columbia (Canada)
Summary
The objective of this project is to develop a large span timber-based composite floor system for the construction of highrise office buildings. This prefabricated floor system could span over 10 m under regular office occupation load, and its use will expedite the construction significantly, converting to multi-million financial savings in a typical 40+ story project, besides the impact on reducing carbon footprint and enhancing living experience.
Less detail

Developing a Large Span Timber-based Composite Floor System for Highrise Office Buildings Phase I

https://research.thinkwood.com/en/permalink/catalogue2803
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Design and Systems
Keywords
Box Girder
Timber Composite Floor
Span
High-Rise
Tall Wood Buildings
Stiffness
Composite Action
Research Status
Complete
Summary
This project proposes a timber-based composite floor that can span 12 m and be used in the construction of 40+ story office buildings. This floor system integrates timber panels and timber beams to form a continuous box girder structure. The timber panels function as the flanges and the timber beams as the web. The beams are spaced and connected to the flange panels so that sufficient bending stiffness of a 12 m span can be achieved via the development of composite action. The current phase of this project studied the performance of the connections between timber elements in the proposed composite member. Six types of connections using different flange material and connection techniques were tested: Cross Laminated Timber (CLT), Laminated Strand Lumber (LSL), Laminated Veneer Lumber (LVL), and Post Laminated Veneer Lumber (PLVL). Glulam was used as the web. The majority of the connections used self-tapping wood screws except one had notches. The load-carrying capacity, stiffness, and ductility of the connections were measured. The stiffness of CLT, LSL, and PLVL connections was in the same range, 19-20 kN/mm per screw. Amongst the three, LSL had the highest peak load and PLVL had the highest proportional limit. The stiffness of the two LVL screw connections was around 13 kN/mm. The notched LVL connection had significantly higher stiffness than the rest, and its peak load was in the same range as LSL, but the failure was brittle. LVL was used to manufacture the full scale timber composite floor element. With a spacing of 400 mm, the overall stiffness reached 33689 N
mm2×109, which was 2.5 times the combined stiffness of two Glulam beams. The predicted overall stiffness based on Gamma method was within 5% of the tested value, and the estimated degree of composite action was 68%. From both the test results and analytical modeling, the number of screws may be further reduced to 50% or less of the current amount, while maintaining a high level of stiffness. Future work includes testing the composite floor under different screw spacings, investigating the effect of concrete topping, and the connections between floor members and other structural elements.
Online Access
Free
Resource Link
Less detail

Development of Urban Timber Buildings using Glued Laminated Timber having Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue2431
Year of Publication
2019
Topic
Fire
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Miyazaki, K.
Matsuzaki, H.
Organization
The University of Tokyo
Publisher
IOP Publishing Ltd
Year of Publication
2019
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Mid-Rise
High-Rise
Fire Resistance
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Summary
In Japan med- and high-rise timber buildings have started to spread in urban areas, based on the building regulations that differ from those in Europe, the cost of timber materials, and the culture for use of timber. It is considered that the use of timber materials in med- and high-rise buildings in urban areas is essential for the environmental and economic sustainability of Japan, which is a major forest country, so we are promoting the development of technologies for use of timber materials in buildings. There are 15 projects in which the fire resistant glulam materials and CLT that satisfy Japan's fireproof standards have been applied, including those currently being designed.
Online Access
Free
Resource Link
Less detail

Dynamic Analysis of the FFTT System

https://research.thinkwood.com/en/permalink/catalogue138
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Fairhurst, Michael
Organization
University of British Columbia
Year of Publication
2014
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
FFTT
Finite Element Model
High-Rise
Lateral Loads
Mid-Rise
Multi-Storey
National Building Code of Canada
Timber-Steel Hybrid
Tall Wood
Research Status
Complete
Summary
The advantages of using timber as the primary construction material in mid- and high-rise buildings are undisputed. Timber is sustainable, renewable, and has a very good strength-toweight ratio, which makes it an efficient building material. However, perceived shortcomings with respect to its ductility and system level behavior; along with lack of appropriate design guidance currently limits the use of timber in taller structures. Overcoming these obstacles will allow timber, and its wood product derivatives, to further expand into the multi-storey construction sector - most likely in hybrid-type structures. The -Finding the Forest Through the Trees (FFTT) system is an innovative timber-steel hybrid system that may allow high-rise timber construction, even in highly seismic regions. The FFTT system utilizes engineered timber products to resist gravity and lateral loads with interconnecting steel members to provide the necessary ductility and predictability for seismic demands. For a novel hybrid system, such as the FFTT, to gain recognition, experimental data must be gathered and supported by computational modeling and analysis in order to prove its component- and system-level performance. This thesis presents research utilizing nonlinear dynamic analysis of finite element (FE) models of the FFTT system, with properties calibrated to physical component tests, to capture the response under significant wind and seismic loads. From the results presented herein, it appears that the FFTT system can meet the design performance requirements required for seismic loading; however, due to its relatively low weight, may be susceptible to wind induced vibrations. All results are based on Vancouver, BC loading as specified by 2010 the National Building Code of Canada.
Online Access
Free
Resource Link
Less detail

Dynamic Behavior of High-Rise Wood Buildings under Wind Loads

https://research.thinkwood.com/en/permalink/catalogue2190
Topic
Wind
Connections
Design and Systems
Application
Wood Building Systems
Organization
Université Laval
Application
Wood Building Systems
Topic
Wind
Connections
Design and Systems
Keywords
National Building Code of Canada
Load Resistance
High-Rise
Tall Wood
Dynamic Behaviour
Research Status
In Progress
Notes
Project contact is Christian Dagenais at Université Laval (Canada)
Summary
The National Building Code of Canada (NBCC, NRC 2015) proposes equations to limit acceleration at the top of a tall building. These equations were developed and validated on several buildings designed between 1975 and 2000. The buildings built during these years are made of concrete or steel. It is therefore not certain that the NBCC equations can be applied for tall wooden buildings; wood being a lighter material than concrete and steel. In this project, the PhD candidate will study the impact of lateral load resistance systems and fastening systems used in timber framing on natural frequency and damping as well as its response due to wind loads. The influence of non-structural elements will also be studied. Two high-rise wooden buildings (Origine, 13 floors in Quebec City and Arbora, 8 floors in Montreal) are currently being instrumented to obtain information on the dynamic behavior of the structure. The measurements taken on these two buildings will be used, among other things, to validate theoretical models developed in the context of the doctorate.
Less detail

Dynamic Response of Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue130
Year of Publication
2015
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Abeysekera, Ishan
MÁLAGA-CHUQUITAYPE, Christian
Organization
Society for Earthquake and Civil Engineering Dynamics
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Wind
Keywords
High-Rise
Mid-Rise
Tall Wood
Tornado
Dynamic Behaviour
Finite element (FE) model
Conference
SECED 2015 Conference
Research Status
Complete
Notes
July 9-10, 2015, Cambridge, UK
Summary
The low carbon footprint and high structural efficiency of engineered wood materials make tall-timber buildings an attractive option for high-rise construction. However, due to the relatively low mass and stiffness characteristics of timber structures, some concerns have been raised regarding their dynamic response. This paper examines the dynamic behaviour of tall timber buildings under tornado and downburst wind loads. It summarizes the results of extensive response history analyses over a suite of FE structural models subjected to different wind actions and compares them with the ISO10137 comfort criteria. In general, large levels of floor accelerations are observed in particular for stiffer medium-rise structures with significant density of walls. It is shown that downburst loading governs the peak acceleration response of medium-rise buildings whilst tornado loading becomes more critical for taller buildings. The effectiveness of TMDs in reducing peak acceleration values is explored. This study emphasizes the need for further studies on the dynamic behaviour of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Feasibility Study of a Wood-Concrete Hybrid Super Tall Building and Optimization of its Wind-Induced Behaviour

https://research.thinkwood.com/en/permalink/catalogue1902
Year of Publication
2018
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Frames
Walls
Shafts and Chases
Author
Slooten, Elgar
Publisher
Delft University of Technology
Year of Publication
2018
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Frames
Walls
Shafts and Chases
Topic
Design and Systems
Wind
Keywords
Dynamic Behaviour
Comfort Properties
Tuned Mass Dampers
Shape
High-Rise
Research Status
Complete
Summary
In this thesis, the technical feasibility of a super tall hybrid wood-concrete building was evaluated and its wind-induced dynamic behaviour was optimized. To this end a 300m tall building of timber and concrete was designed for construction in the city-centre of Rotterdam, The Netherlands. Due to the absence of seismic activity in the area, wind loading was identified as the governing parameter for lateral stability design. The structural design was therefore optimized to satisfy serviceability criteria for lateral drift and occupant comfort. Based on these requirements, the structure was designed as a reinforced concrete core surrounded by a glued-laminated timber (GLT) frame and floor slabs consisting of a cross-laminated timber (CLT) panel with a thin concrete top layer. Lateral stability was ensured by an outrigger/belt-truss system at three levels, resulting in a significant increase of the global stiffness in the structure, and in a reduction of the maximum lateral inter-storey drift by a factor two.
Online Access
Free
Resource Link
Less detail

Fire-Resistance of Timber-Concrete Composite Floor Using Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue255
Year of Publication
2016
Topic
Connections
Fire
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Ranger, Lindsay
Dagenais, Christian
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2016
Format
Report
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Fire
Keywords
High-Rise
Structural Behaviour
Pull-Out Tests
shear connectors
Fire Resistance
Research Status
Complete
Summary
There is a need to demonstrate how novel timber-concrete composite floors can span long distances and be a practical alternative to other traditional structural systems. Better understanding of the fire behaviour of these hybrid systems is essential. To achieve this, the fire-resistance of a timber-concrete composite floor assembly, using BC wood products, will be evaluated in accordance with CAN/ULC-S101 [2]. A 2 hr fire resistance rating will be targeted, as this is the current requirement in high-rise buildings for floor separations between occupancies. The structural behaviour of this type of system will also be assessed from conducting pull-out tests of the shear connectors. In conjunction with previous test data, the results of this test will be used to develop an analytical model to assess the structural and fire-resistance of timber-concrete composite floors.
Online Access
Free
Resource Link
Less detail

Fire Safety Engineering of High Rise Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue308
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Longhi, Giulio
Organization
Delft University of Technology
Year of Publication
2012
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
High-Rise
Code
Finite Element Model
Research Status
Complete
Summary
During this MSc thesis it has been carried out an extensive literature review on fire safety engineering, on timber behaviour on fire and on fire safety regulations in different countries. A preliminary design for a high rise cross laminated timber building (CLT) has been carried out in order to obtain a minimum thickness of the structural elements needed for the load bearing structure. This thickness has been verified according to prescriptive fire regulations. Furthermore, fire safety analyses have been performed to evaluate a more realistic fire behaviour of exposed timber structures. The finite element program SAFIR and the fire model OZone have been used in the advance calculations. Finally, it is shown that timber buildings should be designed according to advance fire safety approach and suggestions are given for developing a timber fire model.
Online Access
Free
Resource Link
Less detail

54 records – page 2 of 6.