Skip header and navigation

56 records – page 1 of 6.

Achieving Sustainable Urban Buildings with Seismically Resilient Mass Timber Core Wall and Floor System

https://research.thinkwood.com/en/permalink/catalogue2802
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Cores
Walls
Floors
Wood Building Systems
Organization
Portland State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Cores
Walls
Floors
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Hold-Down
Seismic Performance
Core Walls
Parametric Analysis
Deformation Capacity
Overstrength
Mid-Rise
High-Rise
Tall Wood Buildings
Research Status
In Progress
Notes
Project contact is Peter Dusicka at Portland State University
Summary
The urgency in increasing growth in densely populated urban areas, reducing the carbon footprint of new buildings, and targeting rapid return to occupancy following disastrous earthquakes has created a need to reexamine the structural systems of mid- to high-rise buildings. To address these sustainability and seismic resiliency needs, the objective of this research is to enable an all-timber material system in a way that will include architectural as well as structural considerations. Utilization of mass timber is societally important in providing buildings that store, instead of generate, carbon and increase the economic opportunity for depressed timber-producing regions of the country. This research will focus on buildings with core walls because those building types are some of the most common for contemporary urban mid- to high-rise construction. The open floor layout will allow for commercial and mixed-use occupancies, but also will contain significant technical knowledge gaps hindering their implementation with mass timber. The research plan has been formulated to fill these gaps by: (1) developing suitable mid- to high-rise archetypes with input from multiple stakeholders, (2) conducting parametric system-level seismic performance investigations, (3) developing new critical components, (4) validating the performance with large-scale experimentation, and (5) bridging the industry information gaps by incorporating teaching modules within an existing educational and outreach framework. Situated in the heart of a timber-producing region, the multi-disciplinary team will utilize the local design professional community with timber experience and Portland State University's recently implemented Green Building Scholars program to deliver technical outcomes that directly impact the surrounding environment. Research outcomes will advance knowledge at the system performance level as well as at the critical component level. The investigated building system will incorporate cross laminated timber cores, floors, and glulam structural members. Using mass timber will present challenges in effectively achieving the goal of desirable seismic performance, especially seismic resiliency. These challenges will be addressed at the system level by a unique combination of core rocking combined with beam and floor interaction to achieve non-linear elastic behavior. This system behavior will eliminate the need for post-tensioning to achieve re-centering, but will introduce new parameters that can directly influence the lateral behavior. This research will study the effects of these parameters on the overall building behavior and will develop a methodology in which designers could use these parameters to strategically control the building seismic response. These key parameters will be investigated using parametric numerical analyses as well as large-scale, sub-system experimentation. One of the critical components of the system will be the hold-down, a device that connects the timber core to the foundation and provides hysteretic energy dissipation. Strength requirements and deformation demands in mid- to high-rise buildings, along with integration with mass timber, will necessitate the advancement of knowledge in developing this low-damage component. The investigated hold-down will have large deformation capability with readily replaceable parts. Moreover, the hold-down will have the potential to reduce strength of the component in a controlled and repeatable way at large deformations, while maintaining original strength at low deformations. This component characteristic can reduce the overall system overstrength, which in turn will have beneficial economic implications. Reducing the carbon footprint of new construction, linking rural and urban economies, and increasing the longevity of buildings in seismic zones are all goals that this mass timber research will advance and will be critical to the sustainable development of cities moving forward.
Resource Link
Less detail

Actuarial Contribution to the Understanding of Insurable Risks Related to Non-residential High-rise Buildings in CLT

https://research.thinkwood.com/en/permalink/catalogue2194
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Non-Residential
Course of Construction Insurance
Research Status
In Progress
Notes
Project contact is Étienne Marceau at Université Laval
Summary
The objective of this project is to identify the risk factors taken into account in the pricing of an insurance contract for a construction site. This project aims to synthesize the quantitative approaches used in practice and presented in academic research for the pricing of home insurance and commercial insurance. Then, we aim to identify the preventive measures that can be taken to reduce the impact of different perils in the insurance of a construction site in wood or other.
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High Rise Project

https://research.thinkwood.com/en/permalink/catalogue1671
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Breneman, Scott
McDonnell, Eric
Zimmerman, Reid
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
US
Diaphragm
Model
High-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3844-3852
Summary
A candidate CLT diaphragm analysis model approach is presented and evaluated as an engineering design tool motivated by the needs of seismic design in the United States. The modeling approach consists of explicitly modeling CLT panels as discrete orthotropic shell elements with connections between panels and connections from panels to...
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High-Rise Project

https://research.thinkwood.com/en/permalink/catalogue1710
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors

Application of Analysis Tools From Newbuilds Research Network in Design of a High-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue278
Year of Publication
2015
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
NEWBuildS
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
High-Rise
British Columbia Building Code
Mixed-Use
Language
English
Research Status
Complete
Summary
In this project, a conceptual but realistic 20-storey building of hybrid construction incorporating massive timber panels and other structural materials was identified. The project team, consisting of three practicing consultants and 6 graduate student and post-doctoral researchers from NEWBuildS, undertook an analysis and engineering design of the demonstration building. An advisory group that includes FPInnovations scientists, NEWBuildS supervisors of the graduate students and Post Doctoral Fellows, provides technical support to the project team. The performance attributes addressed in the project were structural performance under seismic and wind load, fire resistance and building envelope. . This publication documents the analysis and design of the demonstration building, and identifies technical issues that require further study.
Online Access
Free
Resource Link
Less detail

Behaviour of Mass Timber Panel-Concrete Connections with Inclined Self-Tapping Screws and Insulation Layer

https://research.thinkwood.com/en/permalink/catalogue1984
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Floors

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Language
English
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Canadian Mass Timber Demonstration Projects Initiatives

https://research.thinkwood.com/en/permalink/catalogue2147
Year of Publication
2019
Topic
Market and Adoption
Application
Wood Building Systems
Author
Mohammad, Mohammad
Tourrilhes, Julie
Coxford, Richard
Williamson, Miranda
Year of Publication
2019
Country of Publication
Canada
Format
Conference Paper
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Non-Residential
Building Codes
Canada
Tall Wood
Language
English
Conference
Modular and Offsite Construction Summit
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Case Studies of Risk-To-Life Due to Fire in Mid- and High-Rise, Combustible and Non-Combustible Buildings Using CUrisk

https://research.thinkwood.com/en/permalink/catalogue279
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Xia
Mehaffey, Jim
Hadjisophocleous, George
Organization
Carleton University
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
High-Rise
Mid-Rise
Residential
Tall Wood
Office Buildings
CUrisk
Risk-to-Life
Language
English
Research Status
Complete
Summary
In this project, CUrisk was employed to assess and compare the risk-to-life due to fire in mid-rise and high-rise residential and office buildings of wood construction and of non-combustible construction and to demonstrate how fire protection measures can be tuned to ensure a mid-rise or high-rise building of wood construction is as safe as a similar building of non-combustible construction. The computation results show that [...] Comparisons between the numbers of deaths and injuries of scenarios with and without suitable fire protection systems show the importance of fire protection systems in reducing life risk from fire in all buildings. Sustaining the reliability of fire protection systems through proper design, installation, inspection, and maintenance is important to achieve the life safety objectives.
Online Access
Free
Resource Link
Less detail

Construction Management for Tall CLT Buildings: From Partial to Total Prefabrication of Façade Elements

https://research.thinkwood.com/en/permalink/catalogue224
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gasparri, Eugenia
Lucchini, Angelo
Mantegazza, Gabriele
Mazzucchelli, Enrico
Publisher
Taylor&Francis Online
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Design and Systems
Keywords
High-Rise
Prefabrication
Tall Wood
Language
English
Research Status
Complete
Series
Wood Material Science & Engineering
Notes
http://dx.doi.org/10.1080/17480272.2015.1075589
Summary
Cross-Laminated Timber is one of the most widely used engineered wood products, thanks to its numerous advantages, among which construction speed is the most appreciated, both by clients and by designers. However, construction scheduling compression refers exclusively to CLT structures, while the rest of the construction process still requires a longer phase to complete vertical enclosures. The aim of the research work presented in this paper is to outline advantages brought about when the degree of envelope prefabrication of tall timber buildings is increased. Results are presented in two sections. The first includes the definition of a case study together with an overview of possible technical details for entirely prefabricated façade solutions, ready to be installed without the need to work via scaffolds. The second deals with construction site management analysis for the case study building, where the determination of specific factors having an influence on time and costs is achieved by varying the prefabrication degree of the various façade configurations and repeating the analysis process. The main findings of this research work demonstrate that comprehensive façade prefabrication allows not only consistent compression of construction scheduling to be achieved, but also for immediate protection of wooden elements from weather agents.
Online Access
Free
Resource Link
Less detail

56 records – page 1 of 6.