Skip header and navigation

20 records – page 1 of 2.

Accelerated Curing of Large Scale Glued-in-Rods

https://research.thinkwood.com/en/permalink/catalogue2018
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)

An Analytical Model for Design of Reinforcement around Holes in Laminated Veneer Lumber (LVL) Beams

https://research.thinkwood.com/en/permalink/catalogue135
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Ardalany, Manoochehr
Fragiacomo, Massimo
Moss, Peter
Deam, Bruce
Publisher
Springer Netherlands
Year of Publication
2013
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Failure
Glued-In Rods
Model
Reinforcement
Screws
Tensile
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
Openings are usually required to allow services like plumbing, sewage pipes and electrical wiring to run through beams. This prevents an extra depth of the floor/ceiling, while preserving architectural considerations. The introduction of large opening causes additional tension perpendicular to grain in timber beams. The low tensile strength perpendicular to grain of wood allows crack formation. Crack propagation around the hole considerably decreases the load-carrying capacity of the beam. However, in most cases, crack formation and propagation around the hole can be prevented by the use of an appropriate reinforcement. Screw, glued-in rods, and plywood are alternative options for the reinforcement. Design of the reinforcement requires that the working mechanism of the reinforcement is fully understood and properly addressed. In addition, reinforcement should be designed for actions produced in the section of the beam weakened by the hole. The current paper uses a simple truss model around the opening to calculate the tensile force in the reinforcement. Two simple formulations for design of the reinforcement are derived and compared with numerical and experimental results, showing an overall good correspondence. The proposed truss model can be considered for incorporation in future codes of practice.
Online Access
Free
Resource Link
Less detail

Assessment of the Pull Out Strength of Glued In Rods with Different Test Methods

https://research.thinkwood.com/en/permalink/catalogue1667
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Rajcic, Vlatka
Stepinac, Mislav
Košcak, Janko
Damjanovic, Domagoj
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Glued-In Rods
Pull-Out Strength
Pull-Pull Tests
Pull-Compression Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3795-3802
Summary
Glued-in rods (GiR) are an effective way to connect timber elements from both load bearing capacity/stiffness and aesthetic point of view. This method is also widely accepted as a method for reinforcement of the new and existing timber structures. Although GiR are widely used in timber structures, there is still no unified European test standards, product standards or design equations for such connections. At present, there are several test methods and procedures applied in research and development. In this paper two different methods for obtaining pull-out strength are presented. Furthermore, experimental investigation was conducted and results obtained from both methods are mutually compared. Pull – compression test procedure is the most common setup for experimental investigation, however this setup is sometimes not representative and it is often characterized as unreliable because it does not quite good correspond to practical applications. The second examined test procedure was pull-pull. Within the experimental investigation, total number of 36 specimens were tested and results obtained from both methods are shown, discussed and compared in this paper.
Online Access
Free
Resource Link
Less detail

Bond Behavior of Glued-In Timber Joint with Deformed Bar Epoxied in Glulam

https://research.thinkwood.com/en/permalink/catalogue537
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Ling, Zhibin
Liu, Weiqing
Yang, Huifeng
Lu, Weidong
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Glued-in Rods
Bond behavior
Withdrawal Strength
Pull-Pull tests
Failure Modes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper describes the test program of glued-in deformed bar timber joint conducted in pull-pull configuration, which aims to investigate the bond behavior of glued-in deformed bar systems in glulam. The varying parameter are bar slenderness ratio and glue-line thickness. In order to obtain the bond stress distribution along the anchorage length, special deformed bar with strain gauges attached internally were designed. Test results show that both the bar slenderness ratio and glue-line thickness have obvious influence on withdrawal strength and bond behavior of glued-in deformed bar joint. Failure modes of specimens are also analyzed in this paper. Ductile failure modes of glued-in rod timber joint could be realized with reasonable design.
Online Access
Free
Resource Link
Less detail

Capacity Prediction for Glued-In FRP Joints

https://research.thinkwood.com/en/permalink/catalogue2022
Year of Publication
2018
Topic
Connections
Material
Glulam (Glue-Laminated Timber)

A Composite System Using Ultra High-Performance Fibre-Reinforced Concrete and Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1420
Year of Publication
2016
Topic
Mechanical Properties
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Chen, Mengyuan
Organization
University of Toronto
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Acoustics and Vibration
Connections
Keywords
Ultra-High-Performance Fibre-Reinforced Concrete
Push-Out Tests
Glued-In Rods
Bending Tests
Vibration Tests
Span Limits
Language
English
Research Status
Complete
Summary
The application of cross-laminated timber (CLT) as floor panels is limited by excessive deflection and vibration. A composite system combining CLT and ultra high-performance fibre-reinforced concrete (UHPFRC) was developed to extend span limits. Push-off tests were conducted on different connectors, and a glued-in rod connector was chosen and further refined for the proposed system. Static bending tests and free vibration tests were conducted on bare CLT panels and two composite specimens. By comparing the results, it is concluded that the proposed system considerably extend the span limits of CLT panels.
Online Access
Free
Resource Link
Less detail

Cyclic Load Behaviour of Beam-to-Column Glulam Joints Combining Glued-in Rods with Steel Brackets

https://research.thinkwood.com/en/permalink/catalogue2028
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)

The Effect of Depth and Diameter of Glued-In Rods on Pull-Out Connection Strength of Bamboo Glulam

https://research.thinkwood.com/en/permalink/catalogue1451
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Other Materials
Author
Yan, Yan
Liu, Huanrong
Zhang, Xiubiao
Wu, Heng
Huang, Yun
Publisher
Springer Japan
Year of Publication
2016
Country of Publication
Japan
Format
Journal Article
Material
Other Materials
Topic
Connections
Mechanical Properties
Keywords
Bamboo
Steel Connections
Pullout Tests
Glued-In Rods
Threaded Rods
Pull-Out Strength
Adhesives
Failure Modes
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
In order to explore bamboo glulam utilization in structure construction, the adhesive bonded steel connection of bamboo glulam was investigated in this study. By carrying out both-end pullout tests on glued-in threaded rods in bamboo glulam, the effects of depth and diameter of embedded rods in bamboo glulam on the pullout strength and the failure modes were discussed. Results showed that threaded rods fracture and adhesive interface failure were the two main different failure modes in the tests. The pullout peak load of both-end glued-in rods in bamboo glulam increased with the diameter and the embedded length of the threaded rods. To satisfy tensile load of the glued threaded rods (quality 4.8) used in the connections between engineering structural materials, the slenderness ratio ( , the ratio of depth and diameter of glued-in threaded rods) equal to 10 or over was necessary.
Online Access
Free
Resource Link
Less detail

Effect of Glue-line Thickness on Pull-Out Behavior of Glued-in GFRP Rods in LVL: Finite Element Analysis

https://research.thinkwood.com/en/permalink/catalogue1331
Year of Publication
2017
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Madhoushi, Mehrab
Ansell, Martin
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Finite Element Analysis
Glue-line Thickness
Pull-Out Behavior
Modulus of Elasticity
Glued-In Rods
Language
English
Research Status
Complete
Series
Polymer Testing
Summary
This paper uses finite element analysis (FEA) to verify the results of previous experimental works conducted on the effect of glue-line thickness and rate of loading on pull-out behavior of glued-in GFRP rods in LVL. For this purpose, the materials were considered as orthotropic for the timber and the GFRP rod, and isotropic for epoxy resin. To determine the effects of thickness on pull-out, four glue-lines namely 0.5, 1, 2 and 4 mm were modelled. To examine the effects of rate of loading, three glue-lines 0.5, 2 and 4 mm were modelled with different values of modulus of elasticity selected for the resin to simulate higher and lower rates of loading. Results showed that with an increasing thickness of glue-line, the concentration of Z-direction stresses declines across the glue-line thickness from the rod-adhesive interface towards the adhesive-timber interface and the magnitude of shear stresses, tXZ, increases to a maximum within the glue-line in a zone about 20e30% into the resin layer and this is seen for all glueline thicknesses. Also, by changing values of elastic modulus for the resin in the FE model to simulate rate of loading, it was shown that thicker glue-lines are more sensitive to loading rate
Online Access
Free
Resource Link
Less detail

20 records – page 1 of 2.