Skip header and navigation

10 records – page 1 of 1.

An Assessment of Greenhouse Gas Emissions from CLT and Glulam in Two Residential Nearly Zero Energy Buildings

https://research.thinkwood.com/en/permalink/catalogue2441
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Lolli, Nicola
Fufa, Selamawit Mamo
Wiik, Marianne Kjendseth
Publisher
Taylor&Francis Online
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
GHG
Greenhouse gas emissions
Tall Wood
Concrete
Language
English
Research Status
Complete
Series
Wood Material Science & Engineering
Online Access
Free
Resource Link
Less detail

Assessing Life-Cycle Environmental Impacts of CLT Mass Timber Buildings in the U.S. Northeast Region

https://research.thinkwood.com/en/permalink/catalogue2535
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Organization
Forest Products Laboratory
The Nature Conservancy
University of Washington
Consortium for Research on Renewable Industrial Materials
Atelierjones
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
GHG emission reduction
Research Status
In Progress
Notes
Project contact is Hongmei Gu at the Forest Products Laboratory
Summary
The FPL team is in charge of developing a full comparative LCA study for three multiple-story mass timber buildings and their concrete alternatives in the U.S. Northeast region, with Boston as the point location. Using these three comparative LCAs, this research will determine the GHG emissions reduction potential from mass timber use in the building sector for the U.S. region. This may increase potential for growth in wood utilization, timber harvest, and forest management practices through the market demands.
Resource Link
Less detail

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Buildings as a Global Carbon Sink

https://research.thinkwood.com/en/permalink/catalogue2821
Year of Publication
2020
Topic
Environmental Impact
Application
Wood Building Systems
Author
Churkina, Galina
Organschi, Alan
Reyer, Christopher
Ruff, Andrew
Vinke, Kira
Liu, Zhu
Reck, Barabara
Graedel, T.E.
Schellnhuber, Hans Joachim
Publisher
Springer Nature
Year of Publication
2020
Country of Publication
United Kingdom
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
GHG emission reduction
Mid-Rise
Mass Timber
Steel
Concrete
Material Substitution
Commercial Buildings
Residential Buildings
Global
Language
English
Research Status
Complete
Notes
doi.org/10.1038/s41893-019-0462-4
Summary
The anticipated growth and urbanization of the global population over the next several decades will create a vast demand for the construction of new housing, commercial buildings and accompanying infrastructure. The production of cement, steel and other building materials associated with this wave of construction will become a major source of greenhouse gas emissions. Might it be possible to transform this potential threat to the global climate system into a powerful means to mitigate climate change? To answer this provocative question, we explore the potential of mid-rise urban buildings designed with engineered timber to provide long-term storage of carbon and to avoid the carbon-intensive production of mineral-based construction materials.
Online Access
Free
Resource Link
Less detail

Comparison of Carbon Footprints: Mass Timber Buildings vs Steels – A Literature Review

https://research.thinkwood.com/en/permalink/catalogue2380
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Cooney, Emily
Publisher
Lakehead University
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainability
Carbon Footprint
Mass Timber
Steel
Greenhouse Gases
Climate Change
Engineered Wood Product (EWP)
Language
English
Research Status
Complete
Summary
Sustainability and innovation are key components in the fight against climate change. Mass timber buildings have been gaining popularity due to the renewable nature of timber. Although research comparing mass timber buildings to more mainstream buildings such as steel is still in the early stages and therefore, limited. We are looking to determine the difference between carbon footprints of mass timber and traditional steel and concrete buildings. This is done with the intention of determining the sustainability and practicality of mass timber buildings.
Online Access
Free
Resource Link
Less detail

Costs and Procurement for Cross-Laminated Timber in Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue2112
Year of Publication
2019
Topic
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lien, Anne Gunnarshaug
Lolli, Nicola
Publisher
Kaunas University of Technology
Year of Publication
2019
Country of Publication
Lithuania
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Environmental Impact
Keywords
Mid-Rise
Greenhouse Gases
Student Residence
Language
English
Research Status
Complete
Series
Journal of Sustainable Architecture and Civil Engineering
ISSN
2335–2000
Online Access
Free
Resource Link
Less detail

High-Rise Timber Buildings As a Climate Change Mitigation Measure – A Comparative LCA of Structural System Alternatives

https://research.thinkwood.com/en/permalink/catalogue1184
Year of Publication
2016
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Skullestad, Julie
Bohne, Rolf
Lohne, Jardar
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Climate Change
Greenhouse Gases
Reinforced Concrete
Multi-Storey
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
This paper reports on a study examining the potential of reducing greenhouse gas (GHG) emissions from the building sector by substituting multi-storey steel and concrete building structures with timber structures. Life cycle assessment (LCA) is applied to compare the climate change impact (CC) of a reinforced concrete (RC) benchmark structure to the CC of an alternative timber structure for four buildings ranging from 3 to 21 storeys. The timber structures are dimensioned to meet the same load criteria as the benchmark structures. The LCA comprises three calculation approaches differing in analysis perspective, allocation methods, and modelling of biogenic CO2 and carbonation of concrete. Irrespective of the assumptions made, the timber structures cause lower CC than the RC structures. By applying attributional LCA, the timber structures are found to cause a CC that is 34-84% lower than the RC structures. The large span is due to different building heights and methodological assumptions. The CC saving per m2 floor area obtained by substituting a RC structure with a timber structure decrease slightly with building height up to 12 storeys, but increase from 12 to 21 storeys. From a consequential LCA perspective, constructing timber structures can result in avoided GHG emissions, indicated by a negative CC. Compared to the RC structures, this equal savings greater than 100%.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of a Post-Tensioned Timber Frame in Comparison to a Reinforced Concrete Frame for Tall Buildings

https://research.thinkwood.com/en/permalink/catalogue412
Year of Publication
2016
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Cattarinussi, Laurent
Hofstetter, Kathrin
Ryffel, Rinaldo
Zumstein, K.
Ioannidou, Dimitra
Klippel, Michael
Year of Publication
2016
Country of Publication
Switzerland
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Environmental Impact
Keywords
Concrete
Sustainability
Life-Cycle Assessment
Post-Tensioned
Greenhouse Gases
Costs
Construction Time
Language
English
Conference
SBE Regional Conference
Research Status
Complete
Notes
June 15-17, 2016, Zurich, Switzerland
Summary
Consuming over 40% of total primary energy, the built environment is in the centre of worldwide strategies and measures towards a more sustainable future. To provide resilient solutions, a simple optimisation of individual technologies will not be sufficient. In contrast, whole system thinking reveals and exploits connections between parts. Each system interacts with others on different scales (materials, components, buildings, cities) and domains (ecology, economy and social). Whole-system designers optimize the performance of such systems by understanding interconnections and identifying synergies. The more complete the design integration, the better the result. In this book, the reader will find the proceedings of the 2016 Sustainable Built Environment (SBE) Regional Conference in Zurich. Papers have been written by academics and practitioners from all continents to bring forth the latest understanding on systems thinking in the built environment.
Online Access
Free
Resource Link
Less detail

Resource Efficiency in Multi-Storey Wooden Buildings

https://research.thinkwood.com/en/permalink/catalogue1625
Year of Publication
2016
Topic
General Information
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vares, Sirje
Häkkinen, Tarja
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
General Information
Environmental Impact
Keywords
GHG
Resource Consumption
Multi-Storey
Prefabricated
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2727-2734
Summary
Sustainable use of natural resources is essential in lean construction. Resource efficiency brings responsibilities’ for all actors in the whole building value chain. In wooden construction sustainable use of natural resources starts with sustainable forestry, but the design process is responsible for designing resource efficient solutions which are durable, material and energy efficient and long lasting. This paper focuses on studying resource consumption and consequent GHG impacts. The results are given for two wooden prefabricated multi-storey building technologies: for the construction with large elements and for box-modules. Life cycle based material flow accounting shows that the lightweight nature of wooden structures embodies efficiency in resource use. However it depends also on building shape, compactness and the type of on designed solutions. When the intensity of other materials is high enough and the building design is not favourable the final result for the wooden building can be on the same level with concrete buildings. This study clarifies the understanding about material efficiency in wooden buildings.
Online Access
Free
Resource Link
Less detail

A Study Comparing the Global Warming Potential of Timber and Reinforced Concrete Construction in Office and Apartment Buildings

https://research.thinkwood.com/en/permalink/catalogue1928
Year of Publication
2017
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems

10 records – page 1 of 1.