Skip header and navigation

31 records – page 1 of 4.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Assessment of Dynamic Characteristics of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1786
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hummel, Johannes
Seim, Werner
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Keywords
Natural Frequency
Multi-Storey
Force-Based Design
Stiffness
Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5819-5828
Summary
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
Online Access
Free
Resource Link
Less detail

Assessment of Timber Floor Vibration Performance: A Case Study in Italy

https://research.thinkwood.com/en/permalink/catalogue147
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Casagrande, Daniele
Piazza, Maurizio
Franciosi, Alessandro
Pederzolli, Federico
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Dynamic
Eurocode
ISO
Italy
Natural Frequency
Numerical analysis
Testing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibrations induced by people walking is one of the most important issue in timber floor design. Low natural frequency and low mass require a careful analysis in order to prevent significant annoyance and to guarantee an acceptable human comfort. This paper is concerned with the assessment of vibration performance of a timber-concrete composite timber floor and a cross laminated timber floor used in two timber buildings under construction in Trento (Italy). Different approaches suggested by Standards and literature were employed: analytical methods, numerical analyses and laboratory tests. About analytical methods the uniformed distributed load deflection criterion (ULD), the Eurocode 5 criterion and some criterions from literature were compared, whereas the Vibration Dose Value (VDV) method, as suggested by ISO 10137, was used for the numerical models and the laboratory tests. The numerical analyses were carried out by means of a finite element modelling. The load due to footfall was simulated by static and dynamic vertical forces. The laboratory tests were characterized by thirty walking tests for each floor. Impact testing with modal hammer was also undertaken in order to investigate the dynamic properties of the specimens. All results are compared and discussed.
Online Access
Free
Resource Link
Less detail

Characteristics of the Radio-Frequency/Vacuum Drying of Heavy Timbers for Post and Beam of Korean Style Housings Part II: For Korean Red Pine Heavy Timbers with 250 × 250 mm, 300 × 300 mm in Cross Section and 300 mm in Diameter, and 3,600 mm in Length

https://research.thinkwood.com/en/permalink/catalogue1508
Year of Publication
2011
Topic
Moisture
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Author
Lee, Nam-Ho
Zhao, Xue-Feng
Shin, Ik-Hyun
Park, Moon-Jae
Park, Jung-Hwan
Park, Joo-Saeng
Publisher
The Korean Society of Wood Science Technology
Year of Publication
2011
Country of Publication
Korea
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Topic
Moisture
Keywords
Radio-Frequency/Vacuum Drying
Moisture Gradient
Shrinkage
Case Hardening
Surface Checks
Compressive Load
Language
Korean
Research Status
Complete
Series
Journal of the Korean Wood Science and Technology
Summary
This study examined the characteristics of radio-frequency/vacuum dried Korean red pine (Pinus densoflora heavy timbers with 250 × 250 mm (S), 300 × 300 mm (L) in cross section and 300 mm in diameter, and 3,600 mm in length, which were subjected to compressive loading after a kerf pretreatment. The following results were obtained : The drying time was short and the drying rate was high in spite of the large cross section of specimens. The moisture gradient inall specimens was gentle in both longitudinal and transverse directions owing to dielectric heating. The shrinkage of the width in the direction perpendicular to was 21 percent ~ 76 percent of that of the thickness of square timbers in the direction parallel to the mechanical pressure. The casehardening for all specimens was very slight because of significantly reduced ratio of the tangential to radial shrinkage of specimens and kerfing. The surface checks somewhat severely occurred although the occurrence extent of the surface checks on the kerfed specimens was slight compared withthat on the control specimen.
Online Access
Free
Resource Link
Less detail

Correlation between Sound Insulation and Occupants’ Perception – Proposal of Alternative Single Number Rating of Impact Sound

https://research.thinkwood.com/en/permalink/catalogue79
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ljunggren, Fredrik
Simmons, Christian
Hagberg, Klas
Publisher
ScienceDirect
Year of Publication
2014
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Airborne Sound
Frequency
Insulation
Lightweight
Sound
Sweden
Language
English
Research Status
Complete
Series
Applied Acoustics
Summary
Traditionally, multi-family houses have been constructed using heavy, homogenous materials like concrete and masonry. But as a consequence of the progress of lightweight building systems during the last decades, it has been questioned whether standardized sound insulation evaluation methods still are appropriate. An extensive measurement template has been applied in a field survey where several vibrational and acoustical parameters were determined in ten Swedish buildings of various constructions. In the same buildings, the occupants were asked to rate the perceived annoyance from a variety of natural sound sources. The highest annoyance score concerned impact sounds, mainly in the buildings with lightweight floors. Statistical analyses between the measured parameters and the subjective ratings revealed a useful correlation between the rated airborne sound insulation and R0 w þ C50—3150 while the correlation between the rated impact sound insulation and L0 n;w þ CI;50—2500 was weak. The latter correlation was considerably improved when the spectrum adaptation term with an extended frequency range starting from 20 Hz was applied. This suggests that frequencies below 50 Hz should be considered when evaluating impact sound in lightweight buildings.
Online Access
Free
Resource Link
Less detail

Correlation Between Sound Insulation and Occupants' Perception - Proposal of Alternative Single Number Rating of Impact Sound, Part II

https://research.thinkwood.com/en/permalink/catalogue2134
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency, which challenges the floor vibration controlled design. A laboratory study, including subjective evaluation and measurement of the natural frequencies and one-kN static deflections, was conducted on wood-concrete composite floors. Method of calculation of the composite bending stiffness of the wood-concrete composite floor is proposed. The design criterion for human comfort was derived from the subjective evaluation results using the calculated fundamental natural frequency and 1 kN static deflection of one meter wide strip of the composite floor. The equation to directly determine the vibration controlled spans from the stiffness and mass was derived. Limited verification was performed. Further verification is needed when more field wood-concrete composite floors become available.
Online Access
Free
Resource Link
Less detail

Development of a Vibroacoustic Stochastic Finite Element Prediction Tool for a CLT Floor

https://research.thinkwood.com/en/permalink/catalogue2008
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Qian, Cheng
Ménard, Sylvain
Bard, Delphine
Negreira, Juan
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Impact Sound Insulation
Low Frequency
Simulation
Language
English
Research Status
Complete
Series
Applied Sciences
ISSN
2076-3417
Online Access
Free
Resource Link
Less detail

Dynamic Behaviour of LVL-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue315
Year of Publication
2015
Topic
Acoustics and Vibration
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Abd. Ghafar, Nor
Organization
University of Canterbury
Year of Publication
2015
Country of Publication
New Zealand
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Finite Element Model
Dynamic Behaviour
Natural Frequency
Mode shape
Electrodynamic Shaker
Boundary Conditions
Language
English
Research Status
Complete
Summary
This research focuses on the dynamic behaviour of long span LCC flooring systems. Experimental testing and finite element modelling was used to determine the dynamic behaviour, with particular regard to the natural frequency, fn and mode shape of an LCC floor. Both the experimental results and the finite element analyses agreed and showed that increased stiffness increased the natural frequency of the floor, and the boundary conditions influenced the dynamic behaviour of the LCC floor. Providing more restraint increased the stiffness of the floor system. The connectors' stiffness did not influence the dynamic performance of the floor. The research showed that a 8 m LCC long span floor can be constructed using LVL joists of between 300 mm to 400 mm depth with a concrete thickness of 65 mm for the longer spans, and joists of between 150 mm to 240 mm depth in conjunction with a concrete topping thickness of 100 mm for the shorter spans.
Online Access
Free
Resource Link
Less detail

Dynamic Characterization and Vibration Analysis of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2213
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

31 records – page 1 of 4.