The goal of this study is to evaluate the effect of different sizes of drift pins (12mm, 16mm, 20mm, 30mm) and six orientations of glulam associated with pin positions (RL, TL, LR, TR, LT, RT) on bearing stress and strain distributions of glulam using di...
Cross-laminated timber (CLT) is an innovative wood panel composite that has been attracting growing interest worldwide. Apart from its economic benefits, CLT takes full advantage of both the tensile strength parallel to the wood grain and its compressive strength perpendicular to the grain, which enhances the load bearing capacity of the composite. However, traditional CLT panels are made with glue, which can expire and lose effectiveness over time, compromising the CLT panel mechanical strength. To mitigate such shortcomings of conventional CLT panels, we pioneer herein nail-cross-laminated timber (NCLT) panels with more reliable connection system. This study investigates the flexural performance of NCLT panels made with different types of nails and explores the effects of key design parameters including the nail incidence angle, nail type, total number of nails, and number of layers. Results show that NCLT panels have better flexural performance than traditional CLT panels. The failure mode of NCLT panels depends on the nail angle, nail type, and quantity of nails. A modified formula for predicting the flexural bearing capacity of NCLT panels was proposed and proven accurate. The findings could blaze the trail for potential applications of NCLT panels as a sustainable and resilient construction composite for lightweight structures.
Mechanical Performance of Glue Joints in Structural Hardwood Elements as those for solid beech wood, wherein also the crack propagation takes place. It can be concluded that such joints have the necessary strength to be...
Study on Seismic Performance of Building Construction with Cross Laminated Timber: Part 14: Deformation of Joints and Fracture Behavior on Three Story Full-Scale Static Load Test