Skip header and navigation

4 records – page 1 of 1.

The Case for CLT Manufacturing in Maine

https://research.thinkwood.com/en/permalink/catalogue2382
Year of Publication
2019
Topic
Market and Adoption
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Climate Effects of Forestry and Substitution of Concrete Buildings and Fossil Energy

https://research.thinkwood.com/en/permalink/catalogue2774
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Gustavsson, L.
Nguyen, T.
Sathre, Roger
Tettey, U.Y.A.
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Climate Change
Modular Construction
Carbon Emissions
Forest Management
Research Status
Complete
Series
Renewable and Sustainable Energy Reviews
Summary
Forests can help mitigate climate change in different ways, such as by storing carbon in forest ecosystems, and by producing a renewable supply of material and energy products. We analyse the climate implications of different scenarios for forestry, bioenergy and wood construction. We consider three main forestry scenarios for Kronoberg County in Sweden, over a 201-year period. The Business-as-usual scenario mirrors today's forestry while in the Production scenario the forest productivity is increased by 40% through more intensive forestry. In the Set-aside scenario 50% of forest land is set-aside for conservation. The Production scenario results in less net carbon dioxide emissions and cumulative radiative forcing compared to the other scenarios, after an initial period of 30–35 years during which the Set-aside scenario has less emissions. In the end of the analysed period, the Production scenario yields strong emission reductions, about ten times greater than the initial reduction in the Set-aside scenario. Also, the Set-aside scenario has higher emissions than Business-as-usual after about 80 years. Increasing the harvest level of slash and stumps results in climate benefits, due to replacement of more fossil fuel. Greatest emission reduction is achieved when biomass replaces coal, and when modular timber buildings are used. In the long run, active forestry with high harvest and efficient utilisation of biomass for replacement of carbon-intensive non-wood products and fuels provides significant climate mitigation, in contrast to setting aside forest land to store more carbon in the forest and reduce the harvest of biomass.
Online Access
Free
Resource Link
Less detail

Contribution of forest wood products to negative emissions: historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland

https://research.thinkwood.com/en/permalink/catalogue3083
Year of Publication
2018
Topic
Environmental Impact
Author
Iordan, Cristina-Maria
Hu, Xiangping
Arvesen, Anders
Kauppi, Pekka
Cherubini, Francesco
Organization
Norwegian University of Science and Technology (NTNU)
Publisher
Springer
Year of Publication
2018
Format
Journal Article
Topic
Environmental Impact
Keywords
Negative CO2 Emission
Forest Wood Products
Carbon Balance
Biomass
Forest Management
Bioenergy
Life-Cycle Assessment
Research Status
Complete
Series
Carbon Balance and Management
Summary
Background Forests and forest products can significantly contribute to climate change mitigation by stabilizing and even potentially decreasing the concentration of carbon dioxide (CO2) in the atmosphere. Harvested wood products (HWP) represent a common widespread and cost-efficient opportunity for negative emissions. After harvest, a significant fraction of the wood remains stored in HWPs for a period that can vary from some months to many decades, whereas atmospheric carbon (C) is immediately sequestered by vegetation re-growth. This temporal mismatch between oxidation of HWPs and C uptake by vegetation generates a net sink that lasts over time. The role of temporary carbon storage in forest products has been analysed and debated in the scientific literature, but detailed bottom-up studies mapping the fate of harvested materials and quantifying the associated emission profiles at national scales are rare. In this work, we quantify the net CO2 emissions and the temporary carbon storage in forest products in Norway, Sweden and Finland for the period 1960–2015, and investigate their correlation. We use a Chi square probability distribution to model the oxidation rate of C over time in HWPs, taking into consideration specific half-lives of each category of products. We model the forest regrowth and estimate the time-distributed C removal. We also integrate the specific HWP flows with an emission inventory database to quantify the associated life-cycle emissions of fossil CO2, CH4 and N2O. Results We find that assuming an instantaneous oxidation of HWPs would overestimate emissions of about 1.18 billion t CO2 (cumulative values for the three countries over the period 1960–2015).We also find that about 40 years after 1960, the starting year of our analysis, are sufficient to detect signs of negative emissions. The total amount of net CO2 emissions achieved in 2015 are about - 3.8 million t CO2, - 27.9 t CO2 and - 43.6 t CO2 in Norway, Sweden, and Finland, respectively. Conclusion We argue for a more explicit accounting of the actual emission rates from HWPs in carbon balance studies and climate impact analysis of forestry systems and products, and a more transparent inclusion of the potential of HWP as negative emissions in perspective studies and scenarios. Simply assuming that all harvested carbon is instantaneously oxidized can lead to large biases and ultimately overlook the benefits of negative emissions of HWPs.
Online Access
Free
Resource Link
Less detail

Forest Management, Market and Climate Impacts of Mass Timber Materials

https://research.thinkwood.com/en/permalink/catalogue2341
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
The Nature Conservancy
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
LCA
Life Cycle Analysis
Forest Management
Climate Impacts
Research Status
In Progress
Summary
The Nature Conservancy is leading a multi-institution collaboration to quantify the potential for innovative mass timber materials to support improved forest management, revitalize forest economies and mitigate greenhouse gas emissions. Life cycle assessments (LCAs) of engineered timber products such as glued laminated timber (glulam) and cross-laminated timber (CLT) in construction have highlighted their environmental advantages over conventional materials such as concrete and steel. However, there is little understanding of how developing new markets for such materials could support the wood product sector and the management of US forests. This applied research will assess in detail the potential impacts of large-scale growth in mass timber demand on wood product markets, timber harvest, forest management and climate change mitigation in key wood-producing regions across the USA and globally, as well as opportunities to leverage these markets to support US forest management and rural economies. The findings will be used to produce peer-reviewed publications and design a suite of targeted stakeholder engagement materials and programs, providing an objective, credible fact base to inform the design of policies and programs to maximize environmental and economic benefits of mass timber use for the forest sector.
Resource Link
Less detail