Solid-sawn lumber (Douglas-fir, southern pine, Spruce– Pine–Fir, and yellow-poplar), laminated veneer lumber (Douglas-fir, southern pine, and yellow-poplar), and laminated strand lumber (aspen and yellow-poplar) were heated continuously at 82°C (180...
Wood used in industrial settings, and in some arid parts of the United States, may be subjected to very low relative humidity (RH). Analytical models available for predicting the effect of moisture content (MC) on the properties of solid-sawn lumber imply significant strength loss at very low MC...
Project contacts are Robert J. Ross at the Forest Products Laboratory and Rubin Shmulsky at Mississippi State University
Summary
Notches, particularly when incorporated on the tensile face, influence the ultimate capacity of members, such as beams and floor panels. Understanding and quantification of failure modes, ductility, and strength of notched CLT floor panels can allow the safe application of notches on building construction. Despite wood’s ductility, notches are known areas of stress concentration. The 2018 International Residential Code for one- and two-family dwellings (International Code Council 2017) restricts the use of notches on engineered wood products by requiring structural calculations instead of elucidating the ways notches might be used. To employ CLT to its maximum potential, there is a current and pressing need for better knowledge regarding the influence of notches on flexural performance.
This research seeks to review the literature regarding notches in solid and engineered beams, review typical CLT design details that employ or utilized notched panels, and conduct pilot-scale testing of notched CLT panels.
A finite element model is developed to analyse, as a function of volume fraction, the effects of reinforcement geometry and arrangement within a timber beam. The model is directly validated against experimental equivalents and found to never be mismatched by more than...
Building using cross-laminated timber (CLT) began in Europe about two decades ago and has used a variety of methods for structural analysis. Experimental testing methods were the most accurate, yet they lacked versatility because changes in lay-up, material, or even manufacturing methods could cause a need for new testing. Consequently, three analytical approaches have been created and are commonly used in Europe as none have been universally accepted to date. ... In the United States and Canada, the product standard (Standard for Performance-Rated Cross-Laminated Timber - ANSI/APA PRG 320) has adopted the Shear Analogy method to derive composite bending and shear stiffness properties.