Skip header and navigation

29 records – page 1 of 3.

Challenge to Two-Hours Fire-Resistive Glued Laminated Timber Made of Japanese Cedar

https://research.thinkwood.com/en/permalink/catalogue1711
Year of Publication
2016
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Author
Hattori, Nobuaki
Ando, Keisuke
Harada, Toshiro
Kamikawa, Daisuke
Miyabayashi, Masayuki
Nishimura, Kouta
Kakae, Norichika
Miyamoto, Keiichi
Nishide, Naoki
Hebiishi, Takahiro
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Keywords
Japanese Cedar
Fire Test
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4487-4494
Summary
We developed a one-hour fire-proof glulam made of Japanese cedar and got the authorization as abuilding material from the Minister of Land, Infrastructure and Transportation. We also succeeded to give one-hour fire performance to cross laminated timber (CLT) using the same concept. The both structures consist of three parts which are load-bearing part, fire-die-out part and surface part. Therefore, we challenged two-hours fire-resistive glulam using the same concept. We used not only drill but also CO2 laser as an incising for lamina of fire-die-out parts and impregnated the fire retardant evenly for diffusion. The main reason to use drill is that the handling of CO2 laser is not so easy for glulam manufacturer. Comparisons of fire-performance between fire-die-out parts whose lamina were incised by drill and CO2 laser, and finger jointed load-bearing part made of Japanese cedar and larch were also achieved using the same glulam whose fire-die-out part is 90 mm in total thickness. The fire test was achieved in a furnace in accordance with a standard heating curve by ISO 834-1. Though this glulam failed two-hours fire performance by a little char and discoloration, we could know the difference in incising method and density of load-bearing part.
Online Access
Free
Resource Link
Less detail

Charring Behavior of Structural Timber Elements in Full-Scale Fire Tests of Three Story Timber School Buildings

https://research.thinkwood.com/en/permalink/catalogue1706
Year of Publication
2016
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Suzuki, Jun-ichi
Kaku, Chihiro
Naruse, Tomohiro
Kagiya, Koji
Noboru, Yasui
Itagaki, Naoyuki
Izumi, Jun-ichi
Seki, Mariko
Kaku, Teruhiko
Hasemi, Yuji
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Charring Rate
Delamination
Full Scale
Fire Test
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4437-4446
Summary
The charring behavior of timber structural elements, such as the charring rate of timber elements and delamination of glue-laminated timber, affects the structural stability of timber buildings. The charring rate of timber elements varies depending on the severity of fire exposure. However, charring rates have been ordinarily investigated in fire tests under the standard fire exposure defined by ISO 834. It is important to accumulate and analyze data on the charring behavior of timber elements under actual fire exposure. The aim of this study was to clarify the charring behavior of glue-laminated timber structural elements exposed to actual fire in full-scale fire tests of three-story timber school buildings. Charred and uncharred areas of the timber structural elements were carefully observed and investigated after the fire tests. The charring rates of timber elements in full-scale fire tests ranged from 0.6 mm/min to 1.3mm/min. The charring rates were greater than the nominal charring rates reported in past studies because of preheating and severe fire exposure.
Online Access
Free
Resource Link
Less detail

Compartment Fire Testing of a Two-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue1825
Year of Publication
2018
Topic
Fire
Application
Wood Building Systems
Author
Zelinka, Samuel
Hasburgh, Laura
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Report
Application
Wood Building Systems
Topic
Fire
Keywords
Tall Wood
Gypsum
Mass Timber
Fire Performance
Compartment Fire Test
Sprinklers
Research Status
Complete
Summary
Five full-scale fire experiments were conducted to observe the performance of a two-level apartment-style structure constructed of mass timber. Each level consisted of a one bedroom apartment, an L-shaped corridor, and a stairwell connecting the two levels. One of the primary variables considered in this test series was the amount and location of exposed mass timber. The amount of mass timber surface area protected by gypsum wallboard ranged from 100% to no protection. For each experiment, the fuel load was identical and the fire was initiated in a base cabinet in the kitchen. In the first three experiments, the fire reached flashover conditions, and subsequently underwent a cooling phase as the fuel load from combustible contents was consumed. The first three experiments were carried out for a duration of up to 4 h. In the fourth experiment, automatic fire sprinklers were installed. Sprinklers suppressed the fire automatically. In the fifth experiment, the activation of the automatic fire sprinklers was delayed by approximately 20 minutes beyond the sprinkler activation time in the fourth experiment to simulate responding fire service charging a failed sprinkler water system. A variety of instrumentation was used during the experiments, including thermocouples, bidirectional probes, optical density meters, heat flux transducers, directional flame thermometers, gas analyzers, a fire products collector, and residential smoke alarms. In addition, the experiments were documented with digital still photography, video cameras, and a thermal imaging camera. The experiments were conducted in the large burn room of the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory located in Beltsville, Maryland, USA. This report provides details on how each experiment was set up, how the experiments were conducted, and the instrumentation used to collect the data. A brief summary of the test results is also included. Detailed results and full data for each test are included in separate appendices.
Online Access
Free
Resource Link
Less detail

Considerations for Detailing the Closure Penetration and Gypsum Fire Separation Wall Interface

https://research.thinkwood.com/en/permalink/catalogue2755
Year of Publication
2015
Topic
Fire
Material
Other Materials
Application
Walls
Author
Lum, Conroy
Organization
FPInnovations
Year of Publication
2015
Format
Report
Material
Other Materials
Application
Walls
Topic
Fire
Keywords
Gypsum
Fire Separation Walls
Fire Doors
Closure Penetration
Fire Performance
Fire Test
Research Status
Complete
Summary
Vertical gypsum fire separation walls that have fire-resistive ratings evaluated in accordance with a recognized standard are permitted for use in building construction. When approved doors are inserted in such walls, the details must be presented for consideration as an “alternative solution”. This guide is based on observations of two CAN/ULC S101 (ULC, 2007) tests on gypsum fire separation walls with S104 (ULC, 2010) approved closure penetrations. The guidance is intended to direct the designer’s attention to potential issues that might impact the performance of a closure penetration in a gypsum separation wall that use a thick wood-based sheathing (i.e. combustible) for carrying the weight of the fire door assembly. General guidance is provided on sizing the sheathing and the need for protecting the sheathing from fire, yet permitting the assembly to accommodate building movements in-service. The purpose of this guide is to recommend considerations when designing the interface between a fire door (closure penetration) in proprietary gypsum separation walls. These considerations form only part of the alternative solution that will need to be presented to the AHJ for approval. Although details are provided in Appendix VI to illustrate a possible solution, it is the responsibility of the designer to understand how the design is expected to perform. The guide discusses three scenarios to assist the designer in formulating an appropriate solution. These are performance under an extreme fire; performance under a limited fire; and performance under normal (non-fire) service conditions that may include high wind or high seismic event.
Online Access
Free
Less detail

Description of Small and Large-Scale Cross Laminated Timber Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1339
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Wood Building Systems
Author
Emberley, Richard
Putynska, Carmen
Bolanos, Aaron
Lucherini, Andrea
Solarte, Angela
Soriguer, Diana
Gonzalez, Mateo
Humphreys, Kathryn
Hidalgo, Juan
Maluk, Cristian
Law, Angus
Torero, Jose
Publisher
ScienceDirect
Year of Publication
2017
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Wood Building Systems
Topic
Fire
Keywords
Large Scale
Small Scale
Compartment Fire Test
Heat Flux
Temperature
Self-Extinction
Research Status
Complete
Series
Fire Safety Journal
Summary
A large-scale fire test was conducted on a compartment constructed from cross laminated timber (CLT). The internal faces of the compartment were lined with non-combustible board, with the exception of one wall and the ceiling where the CLT was exposed directly to the fire inside the compartment. Extinction of the fire occurred without intervention. During the fire test, measurements were made of incident radiant heat flux, gas phase temperature, and in-depth temperature in the CLT. In addition, gas flow velocities and gas phase temperatures at the opening were measured, as well as incident heat fluxes at the facade due to flames and the plume leaving the opening. The fuel load was chosen to be sufficient to attain flashover, to achieve steadystate burning conditions of the exposed CLT, but to minimize the probability of uncertain behaviors induced by the specific characteristics of the CLT. Ventilation conditions were chosen to approximate maximum temperatures within a compartment. Wood cribs were used as fuel and, following decay of the cribs, selfextinction of the exposed CLT rapidly occurred. In parallel with the large-scale test, a small scale study focusing on CLT self-extinction was conducted. This study was used: to establish the range of incident heat fluxes for which self-extinction of the CLT can occur; the duration of exposure after which steady-state burning occurred; and the duration of exposure at which debonding of the CLT could occur. The large-scale test is described, and the results from both the small and large-scale tests are compared. It is found that selfextinction occurred in the large-scale compartment within the range of critical heat fluxes obtained from the small scale tests.
Online Access
Free
Resource Link
Less detail

Enclosure Fire Dynamics with a Cross-Laminated Timber Ceiling

https://research.thinkwood.com/en/permalink/catalogue2690
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Author
McNamee, Robert
Zehfuss, Jochen
Bartlett, Alastair
Heidari, Mohammad
Robert, Fabienne
Bisby, Luke
Organization
Technische Universität Braunschweig
The University of Edinburgh
Publisher
Wiley Online Library
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Topic
Fire
Keywords
Fire Dynamics
Parametric Fire Models
Compartment Fire Test
Research Status
Complete
Series
Fire and Materials
Summary
An experimental study of the influence of an exposed combustible ceiling on compartment fire dynamics has been performed. The fire dynamics in compartments with combustible cross-laminated timber ceilings vs non-combustible reinforced concrete ceilings in otherwise identical compartments with three different ventilation factors were investigated. The experimental results are compared against predictions from two theoretical models for compartment fire dynamics: (a) the parametric fire model given in EN 1991-1-2, and (b) a model developed at Technische Universität Braunschweig, which are the parametric fire models currently used in Germany. It is confirmed that the introduction of a combustible timber ceiling leads to higher temperatures within the enclosure, both under fuel-controlled and ventilation-controlled scenarios. It is also demonstrated that the theoretical models considered in this article require refinement in order to adequately represent all relevant scenarios when combustible ceilings are present. A refinement of the German model, by adding the fuel from the combustible ceiling to the occupancy fuel load, was shown to not adequately capture the response for the ventilation-controlled fires.
Online Access
Free
Resource Link
Less detail

Fire Performance of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2227
Year of Publication
2019
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Fire Performance of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2824
Year of Publication
2021
Topic
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Dagenais, Christian
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
CSA 086
National Design Specifications for Wood Construction (NDSR)
Fire Test
Fire Stopping
Connections
Insurance
Mass Timber
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes recent research and work in progress. A significant amount of fire research has been conducted on mass timber over the last 10 years in Canada. This has supported the successful design and construction of numerous low-, mid-and even high-rise wood buildings. This has also fostered the introduction of new provisions into the National Building Code of Canada which has made wood and mass timber construction more accessible. However, the fire performance of these systems remains a concern for many potential occupants or owners of these buildings, not to mention building officials and fire departments. Research at FPInnovations continues to support designers and builders in the use of mass timber assemblies by ensuring fire safe designs.
Online Access
Free
Resource Link
Less detail

Fire Protection of Light and Massive Timber Elements using Gypsum Plasterboards and Wood Based Panels: A Large-Scale Compartment Fire Test

https://research.thinkwood.com/en/permalink/catalogue194
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Kolaitis, Dionysios
Asimakopoulou, Eleni
Founti, Maria
Publisher
ScienceDirect
Year of Publication
2014
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Failure
Full Scale
Gypsum
Compartment Fire Test
Research Status
Complete
Series
Construction and Building Materials
Notes
https://doi.org/10.1016/j.conbuildmat.2014.09.027
Summary
A full-scale compartment fire test was performed to assess gypsum plasterboards and wood based panels as cladding materials for the fire protection of light and massive timber elements. The test compartment was constructed using both the Timber Frame and the Cross Laminated Timber techniques; a wood crib was used to achieve realistic fire conditions. Temperature measurements and optical inspection evidence suggested that gypsum plasterboards offered adequate fire protection since they did not fail and no charring was observed in the timber elements. A free standing wall inside the test compartment, protected by wood-based panels, partially collapsed. Measured values of characteristic failure times, such as time to failure of fire protection cladding and time to onset of charring, were compared to relevant Eurocode correlations, achieving good levels of agreement. The obtained set of measurements, describing the time evolution of a large variety of physical parameters, such as gas and wall layer temperatures, can be used for validation of relevant advanced fire simulation tools.
Online Access
Free
Resource Link
Less detail

29 records – page 1 of 3.