The objective of this work is to generate fire resistance data for NLT assemblies to address significant gaps in technical knowledge. This research will support designers and builders in the use of mass timber assemblies in larger and taller buildings, as well as provide scientific justification for Authorities Having Jurisdiction (AHJ) to review and accept this construction method. The intent is to demonstrate that NLT construction can meet or exceed NBCC fire safety requirements for use in buildings of mass timber construction.
The data could be used towards the inclusion of an NLT fire resistance calculation methodology into Annex B of CSA 086 - Engineering Design for Wood, which currently addresses only glue-laminated timber (GLT), structural composite lumber (SCL) and cross-laminated timber (CLT).
The objective of this project is to establish fundamental fire performance data for the design and specification of NLT assemblies; this project specially addresses determining FSRs for NLT. The goal of this project is to confirm that NLT, when used as a mass timber element, has a lower FSR than standard thickness SPF boards when tested individually and flatwise. The project also considers how the surface profiles, design details, and the direction of an assembly might influence flame spread. This includes the evaluation of typical architectural features, such as a 'fluted' profile.
It can be observed from this review that most fire safety provisions are similar in nature, whether the Chinese, Canadian or American provisions are applied. However, the Chinese code seems to be slightly more restrictive than the North American building codes with respect to wood-use allowances.
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Fire safety regulations impose very strict requirements on building design, especially for buildings built with combustible materials. It is believed that it is possible to improve the management of these regulations with a better integration of fire protection aspects in the building information modeling (BIM) approach. A new BIM-based domain is emerging, the automated code checking, with its growing number of dedicated approaches. However, only very few of these works have been dedicated to managing the compliance to fire safety regulations in timber buildings. In this paper, the applicability to fire safety in the Canadian context is studied by constituting and executing a complete method from the regulations text through code-checking construction to result analysis. A design science approach is used to propose a code-checking method with a detailed analysis of the National Building Code of Canada (NBCC) in order to obtain the required information. The method starts by retrieving information from the regulation text, leading to a compliance check of an architectural building model. Then, the method is tested on a set of fire safety regulations and validated on a building model from a real project. The selected fire safety rules set a solid basis for further development of checking rules for the field of fire safety. This study shows that the main challenges for rule checking are the modeling standards and the elements’ required levels of detail. The implementation of the method was successful for geometrical as well as non-geometrical requirements, although further work is needed for more advanced geometrical studies, such as sprinkler or fire dampers positioning.
This article provides an overview of the code requirements pertinent to large cross-laminated timber (CLT) buildings and the methods for meeting the requirements in Canada. Canadian building codes are objective-based. Compliance with the code is achieved by directly applying the acceptable solutions up to certain prescriptive building sizes (height and area) or by developing alternative solutions beyond the height and area limits. The fire safety design for a CLT building larger than the prescriptive limit must demonstrate that the building will achieve at least the minimum level of performance afforded by noncombustible construction in limiting the structural involvement in fire and contribution to the growth and spread of fire during the time required for occupant evacuation and emergency responses.
The costs of mass timber may be higher, but the added premium on their prices make them economically feasible. Beyond the economics, mass timber structures present a unique opportunity to develop and test the resiliency of the owner organization and its capacity to innovate. A collective effort to strengthen the supply chain in Ontario (especially the manufacturing stage) is one of the key tools to reduce costs. Having a dedicated fire consulting firm and the early engagement of regulatory bodies and consecrators are some of the key means to control risks in this domain. Earlier projects relied on covering/insulating mass timber sections to achieve the required fire requirements. Increasingly, charring is becoming an acceptable means for fire protection. Using Integrated Project Delivery system (IPD) and Building Information Modeling (BIM) can provide the contractual and technical platforms to boost coordination and promote collaborative design and construction.
The vulnerability of any building, regardless of the material used, in a fire situation is higher during the construction phase when compared to the susceptibility of the building after it has been completed and occupied. This is because the risks and hazards found on a construction site differ both in nature and potential impact from those in a completed building; and these risks are occurring at a time when the fire prevention elements that are designed to be part of the completed building are not yet in place. For these reasons, construction site fire safety includes some unique challenges. Developing an understanding of these hazards and their potential risks is the first step towards fire prevention and mitigation during the course of construction (CoC).
Fire safety is widely perceived as a barrier to implementation of tall timber buildings, particularly for engineered mass timber buildings with significant areas of exposed timber and timber structural framing. This negative perception is exacerbated by a lack of scientific data or experimental evidence on a range of potentially important issues that must be properly understood to undertake rational, performance-based engineering design of such structures. With the goal of delivering fully engineered structural fire designs, this paper presents and discusses a framework for using scientific knowledge, along with fire engineering tools and methods, to enable the design of timber buildings such that, when subject to real fire loads, their performance is quantified. The steps in this framework are discussed with reference to the available literature, in an effort to highlight areas where additional knowledge and tools are needed.