Skip header and navigation

25 records – page 1 of 3.

BIM-Based Code Compliance Checking for Fire Safety in Timber Buildings: A Comparison of Existing Tools

https://research.thinkwood.com/en/permalink/catalogue2110
Year of Publication
2019
Topic
Design and Systems
Fire
Application
Wood Building Systems
Author
Kincelova, Kristina
Boton, Conrad
Blanchet, Pierre
Dagenais, Christian
Year of Publication
2019
Format
Conference Paper
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
BIM
Fire Safety
NBCC
Conference
Canadian Society for Civil Engineering
Research Status
Complete
Summary
The nature and the complexity of building codes, including the fire regulations, result in mainly manual verification and, therefore, in subjective potential interpretations or errors. In the case of timber construction, the fire safety regulations are moreover a challenge due to the combustibility of the material. Further integration of fire safety is needed during the design process in order to increase the reliability of the designs in terms of fire safety. Building information modelling (BIM) technologies offer today new tools for automating different tasks in the construction process. The different approaches and available tools have been therefore compared in the context of fire protection code compliance. For that matter, criteria applicable to the tools have been identified based on literature review and on the National Building Code of Canada prescriptive provisions, but also based on a practical manipulation of the available tools. The potential of the different tools is therefore assessed based on their integration of the fire protection concepts and on their adaptability to BIM. This contextualized comparison has shown that the fire protection integration in BIM is limited. The tools for performance-based fire protection design are not exploring enough the information contained by the building model that is beyond the geometry. The BIM-based compliance checking tools, in turn, contain insufficient space for fire safety regulations checking as advanced spatial study is required for this purpose. Thus, this paper demonstrates the need for further development in terms of exploiting the building models’ semantics in the fire protection context.
Online Access
Free
Resource Link
Less detail

A Circular Approach for the Fire Safety Design in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue3095
Year of Publication
2022
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Siri, Qvist
Organization
Delft University of Technology
Year of Publication
2022
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Mass Timber
Fire Safety Design
Circular Design
Fire Risk
Fire Resilience
Research Status
Complete
Summary
The building industry consumes a lot of material, which causes depletion of material stocks, toxic emissions, and waste. Circular building design can help to reduce this impact, by moving from a linear to a circular design approach. To reach a circular build environment, all disciplines should be involved, including fire safety design. However, there is a contradiction between the objectives of circular and fire safety design, either affecting the aim of protection of material sources, or protection against fire risk. Timber is a material that has high potential in contributing to a circular building industry, as it is renewable, recyclable and can store CO2. However, timber is combustible, which increases the risk of fire. Therefore, mass timber building design has traditionally been restricted by building regulations. To enhance mass timber building design research on timber buildings has increased, to allow understanding of the risks. However, yet general guidelines or understanding on the fire behaviour and risk in timber buildings is lacking. This is a problem for the fire safety design and the potentials of timber contributing to a circular building industry. Until now, there was no specific method available that quantifies this relation between material use and fire risk in mass timber buildings. This limits the possibility of fire safety design and mass timber design to contribute to a more circular building industry. By creating a method that allows comparison between the economic and environmental impact of material use and fire risk, a well-founded choice of building materials is easier to make. The design tool created in this research quantifies the impact on material use for fire safety measures relating to CLT, encapsulation and sprinkler availability and their effect on the fire risk in mass timber buildings. This way insight is provided between the balance of material use and fire risk. By the sum of the impact on material use and fire risk, the total “circular fire safety impact” value is calculated. This value represents the total economic and environmental impact of the design based on the choice of building materials. By changing the fire safety design, the most optimal design variant can be determined. This is the variant with the lowest total impact value. This way, a circular design approach is used to steer fire safety design in mass timber buildings towards a design solution that does not only provide sufficient safety for people, but also provides maximum economic and environmental safety from a material point of view.
Online Access
Free
Resource Link
Less detail

Evaluating Fire Performance of Nail-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2092
Year of Publication
2019
Topic
Fire
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2019
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
NBCC
Fire Safety
Research Status
Complete
Summary
The objective of this work is to generate fire resistance data for NLT assemblies to address significant gaps in technical knowledge. This research will support designers and builders in the use of mass timber assemblies in larger and taller buildings, as well as provide scientific justification for Authorities Having Jurisdiction (AHJ) to review and accept this construction method. The intent is to demonstrate that NLT construction can meet or exceed NBCC fire safety requirements for use in buildings of mass timber construction. The data could be used towards the inclusion of an NLT fire resistance calculation methodology into Annex B of CSA 086 - Engineering Design for Wood, which currently addresses only glue-laminated timber (GLT), structural composite lumber (SCL) and cross-laminated timber (CLT).
Online Access
Free
Resource Link
Less detail

Evaluating Fire Performance of Nail-Laminated Timber: Surface Flammability

https://research.thinkwood.com/en/permalink/catalogue2094
Year of Publication
2019
Topic
Fire
Design and Systems
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2019
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Flame Spread
Fire Safety
Research Status
Complete
Summary
The objective of this project is to establish fundamental fire performance data for the design and specification of NLT assemblies; this project specially addresses determining FSRs for NLT. The goal of this project is to confirm that NLT, when used as a mass timber element, has a lower FSR than standard thickness SPF boards when tested individually and flatwise. The project also considers how the surface profiles, design details, and the direction of an assembly might influence flame spread. This includes the evaluation of typical architectural features, such as a 'fluted' profile.
Online Access
Free
Resource Link
Less detail

Fire Code Development - A Literature Review of North American and Chinese Fire Regulations Related to Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue358
Year of Publication
2014
Topic
Fire
Market and Adoption
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Dagenais, Christian
Peng, Lei
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Market and Adoption
Keywords
Multi-Storey
North America
China
Fire Safety
Research Status
Complete
Summary
It can be observed from this review that most fire safety provisions are similar in nature, whether the Chinese, Canadian or American provisions are applied. However, the Chinese code seems to be slightly more restrictive than the North American building codes with respect to wood-use allowances.
Online Access
Free
Resource Link
Less detail

Fire Safety and Tall Timber Buildings—What’s Next?

https://research.thinkwood.com/en/permalink/catalogue1253
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Fire Safety
Exposed Load Bearing Timber
Concealed Connections
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Online Access
Payment Required
Resource Link
Less detail

Fire Safety in Tall Timber Building: A BIM-Based Automated Code-Checking Approach

https://research.thinkwood.com/en/permalink/catalogue2664
Year of Publication
2020
Topic
Fire
Design and Systems
Application
Wood Building Systems
Author
Kincelova, Kristina
Boton, Conrad
Blanchet, Pierre
Dagenais, Christian
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
BIM
Fire Safety
Building Code
Visual Programming
Compliance Checking
Research Status
Complete
Series
Buildings
Summary
Fire safety regulations impose very strict requirements on building design, especially for buildings built with combustible materials. It is believed that it is possible to improve the management of these regulations with a better integration of fire protection aspects in the building information modeling (BIM) approach. A new BIM-based domain is emerging, the automated code checking, with its growing number of dedicated approaches. However, only very few of these works have been dedicated to managing the compliance to fire safety regulations in timber buildings. In this paper, the applicability to fire safety in the Canadian context is studied by constituting and executing a complete method from the regulations text through code-checking construction to result analysis. A design science approach is used to propose a code-checking method with a detailed analysis of the National Building Code of Canada (NBCC) in order to obtain the required information. The method starts by retrieving information from the regulation text, leading to a compliance check of an architectural building model. Then, the method is tested on a set of fire safety regulations and validated on a building model from a real project. The selected fire safety rules set a solid basis for further development of checking rules for the field of fire safety. This study shows that the main challenges for rule checking are the modeling standards and the elements’ required levels of detail. The implementation of the method was successful for geometrical as well as non-geometrical requirements, although further work is needed for more advanced geometrical studies, such as sprinkler or fire dampers positioning.
Online Access
Free
Resource Link
Less detail

Fire Safety of Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue1866
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Organization
National Research Council of Canada
Publisher
Society of Wood Science and Technology
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Safety
Fire Protection
Fire Resistance
Performance Based Design
Building Codes
Research Status
Complete
Series
Wood and Fiber Science
Summary
This article provides an overview of the code requirements pertinent to large cross-laminated timber (CLT) buildings and the methods for meeting the requirements in Canada. Canadian building codes are objective-based. Compliance with the code is achieved by directly applying the acceptable solutions up to certain prescriptive building sizes (height and area) or by developing alternative solutions beyond the height and area limits. The fire safety design for a CLT building larger than the prescriptive limit must demonstrate that the building will achieve at least the minimum level of performance afforded by noncombustible construction in limiting the structural involvement in fire and contribution to the growth and spread of fire during the time required for occupant evacuation and emergency responses.
Online Access
Free
Resource Link
Less detail

Fire Severity Outcome Comparison of Apartment Buildings Constructed from Combustible and Non-Combustible Construction Materials

https://research.thinkwood.com/en/permalink/catalogue3202
Year of Publication
2022
Topic
Fire
Author
Zheng, Alex
Garis, Len
Pike, Ian
Organization
University of British Columbia
University of Fraser Valley
Publisher
Springer
Year of Publication
2022
Format
Journal Article
Topic
Fire
Keywords
Fire Safety
Combustible Materials
Non-combustible Materials
Apartment Fires
Wood-frame Structures
Research Status
Complete
Series
Fire Technology
Summary
Wood is commonly used in construction, but often perceived as being less safe than structures made from non-combustible materials. With the advancement of wood products and treatment, construction techniques, and protective systems, this may not be the case any longer. Using retrospective data from fire departments across Canada, this study aimed to determine whether the type of construction material (combustible or non-combustible) affected the fire severity outcome of a one to six storey apartment building fire, after accounting for protective systems (smoke alarms and sprinklers). The study found that, after adjusting for the presence of smoke alarms and sprinklers, structures constructed from non-combustible construction materials did not perform better in terms of injuries, requiring extinguishment by fire department, or the fire spreading beyond the room of origin. The presence of working smoke alarms and sprinklers played a central role in reducing the severity outcome of a fire. Smoke alarms and sprinklers both reduced the odds of extinguishment by the fire department and the fire spreading beyond the room of origin. Sprinklers also reduced the injury rate. Overall, this study highlighted the importance of protective systems in reducing fire severity outcomes.
Online Access
Free
Resource Link
Less detail

Mass Timber in High-Rise Buildings: Modular Design and Construction

https://research.thinkwood.com/en/permalink/catalogue2390
Year of Publication
2019
Topic
Design and Systems
Fire
Application
Wood Building Systems
Author
Dorrah, Dalia
Publisher
Sidewalk Labs Toronto
Year of Publication
2019
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Modularization
Fire Safety
Construction Risks
Case Study
Modular Construction
Challenges
Research Status
Complete
Summary
The costs of mass timber may be higher, but the added premium on their prices make them economically feasible. Beyond the economics, mass timber structures present a unique opportunity to develop and test the resiliency of the owner organization and its capacity to innovate. A collective effort to strengthen the supply chain in Ontario (especially the manufacturing stage) is one of the key tools to reduce costs. Having a dedicated fire consulting firm and the early engagement of regulatory bodies and consecrators are some of the key means to control risks in this domain. Earlier projects relied on covering/insulating mass timber sections to achieve the required fire requirements. Increasingly, charring is becoming an acceptable means for fire protection. Using Integrated Project Delivery system (IPD) and Building Information Modeling (BIM) can provide the contractual and technical platforms to boost coordination and promote collaborative design and construction.
Online Access
Free
Resource Link
Less detail

25 records – page 1 of 3.