Skip header and navigation

26 records – page 1 of 3.

Taller Wood Buildings and Fire Safety: Existing Evidence about Large Wood Construction

https://research.thinkwood.com/en/permalink/catalogue2095
Year of Publication
2013
Topic
Fire
Application
Wood Building Systems
Author
Maxim, Paul
Plecas, Darryl
Garis, Len
Clare, Joseph
Organization
University of the Fraser Valley
Year of Publication
2013
Format
Report
Application
Wood Building Systems
Topic
Fire
Keywords
Tall Wood
Fire Safety
Combustible Material
Sprinklers
Research Status
Complete
Summary
Recently, Vancouver architect, Michael Green, issued a report entitled Tall Wood, arguing that skyscrapers and other tall buildings should use more wood as a primary construction material. His argument is that wood is up to the task, is less polluting, and is more environmentally sustainable than the materials currently used. Green’s (2012) buildings would employ “massive timber” elements such as cross laminated timber, laminated strand lumber, and laminated veneer lumber. Green is not suggesting that these tall building be of wood only. Rather, he is arguing that mass timber be integrated with other commonly-used structural materials such as concrete and steel. While wood and wood-mix skyscrapers capture the imagination, extending the height of buildings with the more typical lighter-frame construction is perhaps a more practical concern. Currently, light frame construction tends to be limited to buildings of four storeys and less in North America. In some jurisdictions, this limit is mandated by building codes: in others, it is simply practice. Yet, the ability to construct acceptably safe timber structures with appropriate sprinkler and other technologies led Switzerland to change its fire codes in 2005 and allow the use of structural timber in medium-rise residential buildings of up to six storeys (Frangi and Fontana, 2010). Depending upon the application, mid-sized wood frame buildings can be a less expensive and more flexible alternative to other structures. Despite the prevalence of wood frame structures throughout North America and parts of Europe, major concerns remain over the fire safety of such structures. This paper discusses some of the issues relating to wood structures and flammability.
Online Access
Free
Resource Link
Less detail

Fire Code Development - A Literature Review of North American and Chinese Fire Regulations Related to Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue358
Year of Publication
2014
Topic
Fire
Market and Adoption
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Dagenais, Christian
Peng, Lei
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Market and Adoption
Keywords
Multi-Storey
North America
China
Fire Safety
Research Status
Complete
Summary
It can be observed from this review that most fire safety provisions are similar in nature, whether the Chinese, Canadian or American provisions are applied. However, the Chinese code seems to be slightly more restrictive than the North American building codes with respect to wood-use allowances.
Online Access
Free
Resource Link
Less detail

Solid Wood: Case Studies in Mass Timber Architecture, Technology and Design

https://research.thinkwood.com/en/permalink/catalogue2097
Year of Publication
2015
Topic
Fire
Design and Systems
Environmental Impact
Application
Wood Building Systems
Author
Mayo, Joseph
Publisher
Routledge
Year of Publication
2015
Format
Book/Guide
Application
Wood Building Systems
Topic
Fire
Design and Systems
Environmental Impact
Keywords
Fire Safety
Architecture
Codes
Research Status
Complete
Summary
Over the past 10-15 years a renaissance in wood architecture has occurred with the development of new wood building systems and design strategies, elevating wood from a predominantly single-family residential idiom to a rival of concrete and steel construction for a variety of building types, including high rises. This new solid wood architecture offers unparalleled environmental as well as construction and aesthetic benefits, and is of growing importance for professionals and academics involved in green design.
Online Access
Payment Required
Resource Link
Less detail

Needs for Total Fire Engineering of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1674
Year of Publication
2016
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bartlett, Alastair
Wiesner, Felix
Hadden, Rory
Bisby, Luke
Lane, Barbara
Lawrence, Andrew
Palma, Pedro
Frangi, Andrea
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Fire Safety
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3888-3897
Summary
Fire safety is widely perceived as a barrier to implementation of tall timber buildings, particularly for engineered mass timber buildings with significant areas of exposed timber and timber structural framing. This negative perception is exacerbated by a lack of scientific data or experimental evidence on a range of potentially important issues that must be properly understood to undertake rational, performance-based engineering design of such structures. With the goal of delivering fully engineered structural fire designs, this paper presents and discusses a framework for using scientific knowledge, along with fire engineering tools and methods, to enable the design of timber buildings such that, when subject to real fire loads, their performance is quantified. The steps in this framework are discussed with reference to the available literature, in an effort to highlight areas where additional knowledge and tools are needed.
Online Access
Free
Resource Link
Less detail

Towards Fire Safe Design of Exposed Timber in Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1680
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Crielaard, Roy
Li, Xiao
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Heat Release Rate
Exposed Timber
Fire Safety
Compartment Fires
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3968-3977
Summary
As timber buildings are constructed taller, architects and building owners are asking for more timber to be exposed. Addressing how exposed timber and in particular cross laminated timber, influences a fully developed fire through to self-extinguishment is a current and complex fire safety issue. There is limited research available on how exposed timber alters heat release rate, temperatures and fire duration. This paper provides a summary of the relevant research to understand similarities in findings and how the results of fire tests can be applied. Research shows that large areas of exposed timber has a significant impact on heat release rate, but limited areas of exposed timber can be accommodated within a fire safe design. The location of exposed timber and avoiding two or more adjacent exposed surfaces, is an important finding. It is evident from the limited testing that a single exposed timber wall of approximately 20% of the total wall area has little impact on a compartment fire. The development of a calculation methodology to account for the change in compartment fire dynamics when two or more surfaces are exposed is the next step in the advancement of exposed timber fire safety engineering.
Online Access
Free
Resource Link
Less detail

Structural Fire Design of Tall Timber Buildings Using Cross Laminated Timber (CLT) to Eurocodes

https://research.thinkwood.com/en/permalink/catalogue1779
Year of Publication
2016
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Binsheng
Zhao, Xuan
Sandersaon, Iain
Kilpatrick, Tony
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Fire Safety
Model
Numerical Simulation
Eurocode
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5445-5454
Summary
The development and renaissance of modern engineered products, advanced connections and modern construction technology have made it viable to design and construct multi-storey timber buildings. However, a number of issues need to be raised urgently, in particular fire safety and secondary structural effects. This research aims to...
Online Access
Free
Resource Link
Less detail

Strategy for Code Implementation of 6 + 2 Wood-Frame Podium Buildings

https://research.thinkwood.com/en/permalink/catalogue1880
Year of Publication
2017
Topic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Lanni, Marilyn
Langevin, Marc-André
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2017
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
National Building Code of Canada
Fire Safety
Research Status
Complete
Summary
Sustainable, safe, durable, cost-effective and efficient; wood is used across Canada in occupancy classes such as business, residential, commercial and assembly. In the United States, many mixed-use buildings have been designed as “podium” buildings; a wood structure bearing on a podium of noncombustible construction. The International Building Code includes provisions that allow wood buildings, often housing residential or business occupancies, to be constructed over a podium of noncombustible construction accommodating mercantile or assembly occupancies. The concept of a horizontal fire separation, acting to a certain degree as a “horizontal firewall”, was introduced in the International Building Code in the mid-2000s, allowing the podium to be considered a separate and distinct building from the wood structure that sits overtop. Since podium structures are becoming increasingly “à la mode” in the construction industry, integrating the horizontal fire separation concept into the National Building Code of Canada would allow the industry to benefit from the advantages of wood construction in mixed-use buildings At the request of FPInnovations, this technical report has been prepared as a guideline for the implementation of design provisions for wood podium buildings into the National Building Code of Canada. Various strategies, special considerations, and possible risks for fire safety in this type of building are explored.
Online Access
Free
Resource Link
Less detail

Fire Safety and Tall Timber Buildings—What’s Next?

https://research.thinkwood.com/en/permalink/catalogue1253
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Fire Safety
Exposed Load Bearing Timber
Concealed Connections
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Online Access
Payment Required
Resource Link
Less detail

Fire Safety of Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue1866
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Organization
National Research Council of Canada
Publisher
Society of Wood Science and Technology
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Safety
Fire Protection
Fire Resistance
Performance Based Design
Building Codes
Research Status
Complete
Series
Wood and Fiber Science
Summary
This article provides an overview of the code requirements pertinent to large cross-laminated timber (CLT) buildings and the methods for meeting the requirements in Canada. Canadian building codes are objective-based. Compliance with the code is achieved by directly applying the acceptable solutions up to certain prescriptive building sizes (height and area) or by developing alternative solutions beyond the height and area limits. The fire safety design for a CLT building larger than the prescriptive limit must demonstrate that the building will achieve at least the minimum level of performance afforded by noncombustible construction in limiting the structural involvement in fire and contribution to the growth and spread of fire during the time required for occupant evacuation and emergency responses.
Online Access
Free
Resource Link
Less detail

Fire Safety of Mass timber Buildings with CLT in USA

https://research.thinkwood.com/en/permalink/catalogue3325
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Barber, David
Organization
ARUP
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Mass Timber
Cross Laminated Timber
Fire Safety
Fire Testing
Performance Based Design
Research Status
Complete
Series
Wood and Fiber Science
Summary
Multistory buildings using mass timber and cross-laminated timber (CLT) as the primary structural elements are being planned and constructed globally, with interest starting to gather momentum in the United States. Model building codes in the United States limit timber construction to a building height of 85 ft (25.9 m) because of concerns over fire safety and structural performance. Up to 85 ft, the mass timber can be exposed. Architects and developers in the United States are pushing boundaries, requesting mass timber structures are constructed as high-rises and that load-bearing mass timber such as CLT be exposed and not fully protected. This provides an opportunity for the application of recent fire research and fire testing on exposed CLT to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. Fire testing has shown that exposing large areas of CLT significantly impacts the heat release rate and fire duration. This article provides an overview of the code requirements for timber construction in the United States, provides methods for building approval for a high-rise timber structure, and summarizes recent CLT compartment fire testing that is informing the fire engineering process. Methods for solutions are also discussed.
Online Access
Free
Resource Link
Less detail

26 records – page 1 of 3.