Skip header and navigation

69 records – page 1 of 7.

Advancing Knowledge of Mid-ply Shear Walls: Mid-Ply Shear Wall Fire Resistance Testing

https://research.thinkwood.com/en/permalink/catalogue2808
Year of Publication
2021
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Fire
Keywords
Shear Walls
Fire Resistance Rating
Mid-Rise
Midply Wall
Language
English
Research Status
Complete
Summary
The objective of this research is to address a knowledge gap related to fire performance of midply shear walls. Testing has already been done to establish the structural performance of these assemblies. To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. Fire tests will provide information for the development of design considerations for midply shear walls and confirm that they can achieve at least 1-hour fire-resistance ratings that are required for use in mid-rise buildings. This research will support greater adoption of mid-rise residential and non-residential wood-frame construction and improve competition with similar buildings of noncombustible construction. This work will also support the development of the APA system report for midply walls, which will be a design guideline for using midply walls in North America.
Online Access
Free
Resource Link
Less detail

Analyse de Performance Acoustique et de Résistance au Feu

https://research.thinkwood.com/en/permalink/catalogue2752
Year of Publication
2018
Topic
Acoustics and Vibration
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Organization
Société en commandite NEB
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Acoustics and Vibration
Fire
Keywords
Origine
Fire Resistance
Acoustic Performance
Tall Timber
Multi-Storey
Language
French
Research Status
Complete
Summary
Le présent rapport décrit une partie des activités de recherche et développement (R&D) en lien avec la démonstration de la résistance au feu ainsi que les études sur la performance acoustique effectuées dans le cadre de la construction du bâtiment Origine. Ce bâtiment est la tour résidentielle en bois massif la plus haute au Québec. Sa réalisation a débuté en 2015 à la suite des analyses préliminaires de faisabilité technique-économique qui se sont étalées pendant toute l’année 2014. La construction et l’installation se sont finalisées vers la fin de 2017. En premier lieu, le rapport présente les démarches liées à la réalisation d’un exercice de démonstration d’incendie pour une cage d’escaliers/ascenseur avec une chambre d’habitation adjacente, l’analyse de résultats et les principales conclusions en lien avec la pertinence de l’utilisation du bois massif pour des édifices de grande hauteur. En ce qui concerne la performance acoustique, le rapport présente la méthodologie d’étude et d’analyse des résultats des tests acoustiques pour des assemblages de mur et de plancher utilisés dans le projet Origine. De plus, ce rapport facilite la compréhension des activités réalisées et permet de montrer objectivement la capacité des produits en bois massif à offrir un environnement sécuritaire et confortable aux occupants de bâtiments multi-étagés. Les principaux résultats indiquent que les cages d’escaliers/ascenseur faites en bois massif, conçues pour une résistance au feu équivalente à celle faites en béton, peuvent offrir une excellente performance et servent d’alternatives adéquates pour les bâtiments multi-étagés. En ce qui concerne le développement d’assemblages acoustiques pour les murs et les planchers en bois massif, il a été prouvé qu’une approche multicritère permet d’offrir des solutions performantes à des coûts raisonnables. Finalement, il est clair que ce projet constitue un jalon très important dans le chemin d’acceptation des bâtiments multi-étagés en bois massif au Québec et au Canada. Sa construction, faite presque entièrement en bois, a nécessité de nombreux efforts économiques, de R&D, de conception et d’installation. De plus, les activités réalisées pour l’acceptation de ce type de construction ont permis de mettre en place de nouvelles technologies et des techniques de conception qui faciliteront la réplication de ce type de projet partout en Amérique du Nord.
Online Access
Free
Resource Link
Less detail

Analysis of Cross-Laminated Timber Charring Rates Upon Exposure to Non-Standard Heating Conditions

https://research.thinkwood.com/en/permalink/catalogue136
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Bartlett, Alastair
Hadden, Rory
Bisby, Luke
Law, Angus
Organization
Fire and Materials
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Charring Rate
Heat Release Rate
Fire Resistance
Language
English
Conference
Fire and Materials 2015
Research Status
Complete
Notes
February 2-4, 2015, San Francisco, United States
Summary
The use of engineered timber products such as cross-laminated timber (CLT) is of increasing interest to architects and designers due to their desirable aesthetic, environmental, and structural properties. A key factor preventing widespread uptake of these materials is the uncertainty regarding their performance in fire. Currently, the predominant approach to quantifying the structural fire resistance of timber elements is the charring rate, which allows estimation of residual cross-section and hence strength. The charring rate is usually determined by testing timber specimens in a furnace by exposure to a ‘standard fire’. However, it is recognized that the resulting charring rates are not necessarily appropriate for non-standard fire exposures or for characterizing the structural response in a real timber building. The effect of heating rate on the charring rate of CLT samples is investigated. The charring rate resulting from three heating scenarios (constant, simulated ‘standard fire’ and quadratically increasing) was calculated using interpolation of in-depth temperature measurements during exposure to heating from a mobile array of radiant panels, or in a Fire Propagation Apparatus (FPA). Charring rate is shown to vary both spatially and temporally, and as a function of heating rate within the range 0.36–0.79 mm/min. The charring rate for tests carried out under simulated ‘standard fire’ exposures were shown to agree with the available literature, thus partially verifying the new testing approach; however under other heating scenarios the Eurocode charring rate guidance was found to be unconservative for some of the heat flux exposures in this study. A novel charring rate model is presented based on the experimental results. The potential implications of this study for structural fire resistance analysis and design of timber structures are discussed. The analysis demonstrates that heating rate, sample size and orientation, and test setup have significant effects on charring rate and the overall pyrolysis, and thus need to be further evaluated to further facilitate the use of structural timber in design.
Online Access
Free
Resource Link
Less detail

Analysis of Full-Scale Fire-Resistance Tests of Structural Composite Lumber Beams

https://research.thinkwood.com/en/permalink/catalogue366
Year of Publication
2014
Topic
Fire
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Topic
Fire
Keywords
Encapsulation
Type X Gypsum Board
Fire Resistance
Full Scale
Language
English
Research Status
Complete
Summary
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL). A sub-objective is to evaluate the encapsulation performance of Type X gypsum board directly applied to SCL beams and its contribution to fire-resistance of wood elements. The test data is being used to further support the applicability of the newly developed Canadian calculation method for mass timber elements, recently implemented as Annex B of CSA O86-14.
Online Access
Free
Resource Link
Less detail

Assessing the Fire Integrity Performance of Cross-Laminated Timber Floor Panel-To-Panel Joints

https://research.thinkwood.com/en/permalink/catalogue185
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Dagenais, Christian
Organization
Carleton University
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Fire
Keywords
Finite Element Model
Thickness
Codes
Panel-to-Panel
Joints
Canada
US
Fire Resistance
Language
English
Research Status
Complete
Summary
During the past few years, a relatively new technology has emerged in North America and changed the way professionals design and build wood structures: Cross-laminated Timber (CLT). CLT panels are manufactured in width ranging from 600 mm to 3 m. As such, fastening them together along their major strength axis is required in order to form a singular structural assembly resisting to in-plane and out-of-plane loading. Typical panel-to-panel joint details of CLT assemblies may consist of internal spline(s), single or double surface splines or half-lapped joints. These tightly fitted joint profiles should provide sufficient fire-resistance, but have yet to be properly evaluated for fire-resistance in CLT assemblies. The experimental portion of the study consisted at conducting ten (10) intermediate-scale fire-resistance tests of CLT floor assemblies with four (4) types of panel-to-panel joints and three (3) CLT thicknesses. The data generated from the intermediate-scale fire tests were used to validate a finite element heat transfer model, a coupled thermal-structural model and a simplified design model. The latter is an easy-to-use design procedure for evaluating the fire integrity resistance of the four commonly-used CLT floor assemblies and could potentially be implemented into building codes and design standards. Based on the test data and models developed in this study, joint coefficient values were derived for the four (4) types of CLT panel-to-panel joint details. Joint coefficients are required when assessing the fire integrity of joints using simple design models, such as the one presented herein and inspired from Eurocode 5: Part 1-2. The contribution of this study is to increase the knowledge of CLT exposed to fire and to facilitate its use in Canada and US by complementing current fire-resistance design methodologies of CLT assemblies, namely with respect to the fire integrity criterion. Being used as floor and wall assemblies, designers should be capable to accurately verify both the load-bearing and separating functions of CLT assemblies in accordance with fire-related provisions of the building codes, which are now feasible based on the findings of this study.
Online Access
Free
Resource Link
Less detail

Charring Behavior of Cross Laminated Timber with Respect to the Fire Protection

https://research.thinkwood.com/en/permalink/catalogue267
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Tiso, Mattia
Organization
SP Technical Research Institute of Sweden
Year of Publication
2014
Country of Publication
Sweden
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Small Scale
Cone Calorimeter
Heat Flux
Gypsum Type F
Plywood
Fire Resistance
Language
English
Research Status
Complete
Summary
Timber buildings made with Cross-laminated Timber (CLT) panels are becoming wide spread in Europe. The fire resistance of CLT panels depends upon several parameters, including the number of layers and their thickness. At the present, EN 1995-1-2:2004 does not provide specific information on the fire design of CLT panels. Several fire resistance tests of CLT panels were performed in different scales by furnace testing using the standard fire curve according to ISO 834-1:1999, however the large number of possible combination of CLT products makes testing too complicated and expensive as a tool for the verification of the fire resistance of several combinations. In this report are presented nine small-scale tests carried-out at SP Wood Technology (Technical Research Institute of Sweden). The tests consisted in specimens of CLT and massive timber exposed at a two steps of constant heat flux in a cone calorimeter (50 and 75 kW/m2). Some specimens were exposed with two different types of fire protection (gypsum plasterboard type F and plywood) and some were tested unprotected. Later, thermal simulations with the same set-up of tests were implemented on the finite element software package in Safir 2007, with the time-temperature curve given by ISO 834 as input; also the analytical calculation of the charring depth following the Eurocode 5 part 1-2 was done. The target of this thesis is to compare performed CLT furnace tests with the smallscale cone calorimeter tests carried out, the numerical results of the thermal model and the analytical results obtained.
Online Access
Free
Resource Link
Less detail

CLT Fire Resistance Tests in Support of Tall Wood Building Demonstration Projects

https://research.thinkwood.com/en/permalink/catalogue1882
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Commentary on Closure Penetration Tests on CLT Fire Separations

https://research.thinkwood.com/en/permalink/catalogue2602
Year of Publication
2017
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Lum, Conroy
Thomas, Tony
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Design and Systems
Keywords
Fire Resistance
Fire Tests
Panels
Language
English
Research Status
Complete
Summary
Fire tests on a double egress fire door installed in two Cross Laminated Timber (CLT) wall panels were conducted. The purpose of the testing was to identify design consideration for detailing the interface between a 90 min. listed door assembly and a CLT wall with a 2-hr fire resistance. See also QAI Laboratories test reports: T895-6a Rev.2, and T895-6b Rev. 1
Online Access
Free
Resource Link
Less detail

Comportement au Feu des Éléments de Charpente en Bois Lamellé-Croisé

https://research.thinkwood.com/en/permalink/catalogue1110
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Fire Resistance
Language
French
Research Status
Complete
Summary
Le bois lamellé-croisé (CLT), un système de construction relativement récent pour lequel l’intérêt ne cesse de croître dans le secteur de la construction d’Amérique du Nord, contribue à la définition d’une nouvelle classe de produits massifs en bois. Le CLT est un composant structural à base de bois très prometteur, qui présente un potentiel élevé pour fournir des solutions de construction rentables pour les bâtiments résidentiels, commerciaux et institutionnels ainsi que pour les grandes installations industrielles. L’acceptation de la construction en CLT dans l’environnement réglementaire canadien requiert la conformité aux dispositions relatives à la protection incendie du Code national du bâtiment du Canada (CNBC), entre autres choses. Des essais au feu approfondis ont démontré la capacité du CLT à fournir un degré de résistance au feu pouvant atteindre près de 3 heures lorsque le matériau est mis à l’essai dans des conditions de plein chargement conformément à la norme CAN/ULC S101. De plus amples renseignements sont également fournis sur les propriétés de sécurité incendie connexes, y compris l’indice de propagation des flammes et les dispositifs coupe-feu. Les éléments de CLT sont utilisés dans les systèmes de construction d’une façon similaire aux dalles de béton et aux éléments muraux massifs ainsi qu’aux éléments utilisés dans la construction en gros bois d’œuvre en limitant les vides de construction créés grâce à l’utilisation des éléments massifs en bois, ce qui contribue à réduire le risque d’incendies dans ces vides de construction. En outre, la construction en CLT utilise généralement des panneaux de CLT pour les planchers et les murs porteurs, ce qui permet d’obtenir une compartimentation ayant une résistance inhérente au feu et contribue une fois de plus à réduire le risque de la propagation d’un incendie au-delà de son point d’origine (compartiment d’origine). Le présent document propose une méthodologie visant à déterminer la résistance au feu des éléments de CLT. En tant que modèle déterministe fondé sur les concept de calculs aux états limites, cette méthode permet de calculer la résistance des éléments de CLT soumis à une exposition au feu standard (soit la norme CAN/ULC S101) à l’aide des mécanismes techniques de base du bois pour les calculs de résistance au feu allant jusqu’à 3 heures, qui ne sont limités que par la disponibilité actuelle des données. La méthode utilise un ajustement linéaire échelonné de la vitesse de carbonisation, une épaisseur de la couche carbonisée de 7 mm dont la résistance et la rigidité sont supposées nulles, un coefficient de résistance égal à l’unité, un coefficient de durée d’application de la charge de courte durée, et des résistances spécifiées ajustées à leurs valeurs moyennes pour prédire les temps moyens de résistance au feu des éléments de murs et planchers de CLT qui suivent étroitement les temps réels de résistance au feu des éléments testés. Bien que certaines améliorations à cette méthode soient encore possibles, ces comparaisons suggèrent que la méthodologie prédit de façon prudente la résistance au feu des éléments de CLT.
Online Access
Free
Resource Link
Less detail

Composite Concrete-CLT Floor Systems for Tall Building Design

https://research.thinkwood.com/en/permalink/catalogue2196
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Keywords
Strength
Fire Resistance
Stiffness
Acoustics
Vibration
Research Status
In Progress
Notes
Project contact is Christopher Higgins at Oregon State University
Summary
This project will optimize the strength, stiffness, vibration characteristics, acoustic qualities and fire resistance of cross-laminated floor systems utilizing a composite concrete and cross-laminated timber product. This project includes development, testing and optimization of an economical shear connector (to connect the CLT panel to the concrete slab) that will be compared with existing screw and steel plate solutions. The resulting prototype floor system will be tested at full scale.
Less detail

69 records – page 1 of 7.