Skip header and navigation

67 records – page 1 of 7.

Analysis of Cross-Laminated Timber Charring Rates Upon Exposure to Non-Standard Heating Conditions

https://research.thinkwood.com/en/permalink/catalogue136
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Bartlett, Alastair
Hadden, Rory
Bisby, Luke
Law, Angus
Organization
Fire and Materials
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Charring Rate
Heat Release Rate
Fire Resistance
Language
English
Conference
Fire and Materials 2015
Research Status
Complete
Notes
February 2-4, 2015, San Francisco, United States
Online Access
Free
Resource Link
Less detail

Analysis of Full-Scale Fire-Resistance Tests of Structural Composite Lumber Beams

https://research.thinkwood.com/en/permalink/catalogue366
Year of Publication
2014
Topic
Fire
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Topic
Fire
Keywords
Encapsulation
Type X Gypsum Board
Fire Resistance
Full Scale
Language
English
Research Status
Complete
Summary
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL)...
Online Access
Free
Resource Link
Less detail

Assessing the Fire Integrity Performance of Cross-Laminated Timber Floor Panel-To-Panel Joints

https://research.thinkwood.com/en/permalink/catalogue185
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Dagenais, Christian
Organization
Carleton University
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Fire
Keywords
Finite Element Model
Thickness
Codes
Panel-to-Panel
Joints
Canada
US
Fire Resistance
Language
English
Research Status
Complete
Summary
During the past few years, a relatively new technology has emerged in North America and changed the way professionals design and build wood structures: Cross-laminated Timber (CLT). CLT panels are manufactured in width ranging from 600 mm to 3 m. As such...
Online Access
Free
Resource Link
Less detail

Charring Behavior of Cross Laminated Timber with Respect to the Fire Protection

https://research.thinkwood.com/en/permalink/catalogue267
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)

CLT Fire Resistance Tests in Support of Tall Wood Building Demonstration Projects

https://research.thinkwood.com/en/permalink/catalogue1882
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Commentary on Closure Penetration Tests on CLT Fire Separations

https://research.thinkwood.com/en/permalink/catalogue2602
Year of Publication
2017
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Lum, Conroy
Thomas, Tony
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Design and Systems
Keywords
Fire Resistance
Fire Tests
Panels
Language
English
Research Status
Complete
Summary
Fire tests on a double egress fire door installed in two Cross Laminated Timber (CLT) wall panels were conducted. The purpose of the testing was to identify design consideration for detailing the interface between a 90 min. listed door assembly and a CLT wall with a 2-hr fire resistance. See also QAI Laboratories test reports: T895-6a Rev.2, and T895-6b Rev. 1
Online Access
Free
Resource Link
Less detail

Comportement au Feu des Éléments de Charpente en Bois Lamellé-Croisé

https://research.thinkwood.com/en/permalink/catalogue1110
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Fire Resistance
Language
French
Research Status
Complete
Summary
Cross-laminated lumber (CLT), a relatively new construction system for which construction interest in North America is growing, is helping to define a new class of solid wood products. . CLT is a very promising wood-based structural component with high potential to provide cost-effective building solutions for residential, commercial and institutional buildings...
Online Access
Free
Resource Link
Less detail

Composite Concrete-CLT Floor Systems for Tall Building Design

https://research.thinkwood.com/en/permalink/catalogue2196
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Keywords
Strength
Fire Resistance
Stiffness
Acoustics
Vibration
Research Status
In Progress
Notes
Project contact is Christopher Higgins at Oregon State University
Summary
This project will optimize the strength, stiffness, vibration characteristics, acoustic qualities and fire resistance of cross-laminated floor systems utilizing a composite concrete and cross-laminated timber product. This project includes development, testing and optimization of an economical shear connector (to connect the CLT panel to the concrete slab) that will be compared with existing screw and steel plate solutions. The resulting prototype floor system will be tested at full scale.
Less detail

Cross-Laminated Timber and Gypsum Board Wall Assembly (Load-Bearing) - Standard Methods of Fire Tests of Building Construction and Materials

https://research.thinkwood.com/en/permalink/catalogue711
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Rizzo, Michael
Organization
American Wood Council
Year of Publication
2012
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Type X Gypsum Board
Load Bearing
Fire Resistance
Live Load
Language
English
Research Status
Complete
Summary
The Fire Test Laboratory of NGC Testing Services (NGCTS) conducted testing for American Wood Council (AWC) on a load-bearing, Cross-Laminated Timber (CLT) and gypsum board wall assembly to evaluate its fire resistance properties when exposed to fire acco...
Copyright
Courtesy, American Wood Council, Leesburg, VA
Online Access
Free
Resource Link
Less detail

Design Guide for Timber-Concrete Composite Floors in Canada

https://research.thinkwood.com/en/permalink/catalogue2460
Year of Publication
2020
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Material
Timber-Concrete Composite
Application
Floors
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Guide
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Keywords
Shear Connection
Ultimate Limit States
Vibration
Fire Resistance
Language
English
Research Status
Complete
Summary
As part of its research work on wood buildings, FPInnovations has recently launched a Design Guide for Timber-Concrete Composite Floors in Canada. This technique, far from being new, could prove to be a cost-competitive solution for floors with longer-span since the mechanical properties of the two materials act in complementarity. Timber-concrete systems consist of two distinct layers, a timber layer and a concrete layer (on top), joined together by shear connectors. The properties of both materials are then better exploited since tension forces from bending are mainly resisted by the timber, while compression forces from bending are resisted by the concrete. This guide, which contains numerous illustrations and formulas to help users better plan their projects, addresses many aspects of the design of timber-concrete composite floors, for example shear connection systems, ultimate limit state design, vibration and fire resistance of floors, and much more.
Online Access
Free
Resource Link
Less detail

67 records – page 1 of 7.