Skip header and navigation

11 records – page 1 of 2.

The Case for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue835
Edition
Second
Year of Publication
2017
Topic
General Information
Cost
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Organization
Michael Green Architecture
Edition
Second
Year of Publication
2017
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
General Information
Cost
Environmental Impact
Design and Systems
Keywords
FFTT
Tall Wood
Language
English
Research Status
Complete
Summary
The report describes a new structural system in wood that is the first significant challenger to concrete and steel structures since their inception in tall building design more than a century ago. The introduction of these ideas is fundamentally driven by the need to find safe, carbon-neutral and sustainable alternatives to the incumbent structural materials of the urban world. The market for these ideas is quite simply enormous. The proposed solutions have significant capacity to revolutionize the building industry to address the major challenges of climate change, urbanization, sustainable development and world housing needs.
Online Access
Free
Resource Link
Less detail

Dynamic Analysis of the FFTT System

https://research.thinkwood.com/en/permalink/catalogue138
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Fairhurst, Michael
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
FFTT
Finite Element Model
High-Rise
Lateral Loads
Mid-Rise
Multi-Storey
National Building Code of Canada
Timber-Steel Hybrid
Tall Wood
Language
English
Research Status
Complete
Summary
The advantages of using timber as the primary construction material in mid- and high-rise buildings are undisputed. Timber is sustainable, renewable, and has a very good strength-toweight ratio, which makes it an efficient building material. However, perceived shortcomings with respect to its ductility and system level behavior; along with lack of appropriate design guidance currently limits the use of timber in taller structures. Overcoming these obstacles will allow timber, and its wood product derivatives, to further expand into the multi-storey construction sector - most likely in hybrid-type structures. The -Finding the Forest Through the Trees (FFTT) system is an innovative timber-steel hybrid system that may allow high-rise timber construction, even in highly seismic regions. The FFTT system utilizes engineered timber products to resist gravity and lateral loads with interconnecting steel members to provide the necessary ductility and predictability for seismic demands. For a novel hybrid system, such as the FFTT, to gain recognition, experimental data must be gathered and supported by computational modeling and analysis in order to prove its component- and system-level performance. This thesis presents research utilizing nonlinear dynamic analysis of finite element (FE) models of the FFTT system, with properties calibrated to physical component tests, to capture the response under significant wind and seismic loads. From the results presented herein, it appears that the FFTT system can meet the design performance requirements required for seismic loading; however, due to its relatively low weight, may be susceptible to wind induced vibrations. All results are based on Vancouver, BC loading as specified by 2010 the National Building Code of Canada.
Online Access
Free
Resource Link
Less detail

Experimental and Numerical Investigation of Novel Steel-Timber-Hybrid System

https://research.thinkwood.com/en/permalink/catalogue81
Year of Publication
2014
Topic
Design and Systems
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bhat, Pooja
Azim, Riasat
Popovski, Marjan
Tannert, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Connections
Keywords
Tall Wood
Timber-Steel Hybrid
FFTT
Quasi-Static
Monotonic Testing
Cyclic Testing
Strong-column Weak-beam Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper summarises the experimental and numerical investigation conducted on the main connection of a novel steel-timber hybrid system called FFTT. The component behaviour of the hybrid system was investigated using quasi-static monotonic and reversed cyclic tests. Different steel profiles (wide flange I-sections and hollow rectangular sections) and embedment approaches for the steel profiles (partial and full embedment) were tested. The results demonstrated that when using an appropriate connection layout, the desired strong-column weak-beam failure mechanism was initiated and excessive wood crushing was avoided. A numerical model was developed that reasonably reflected the real component behaviour and can subsequently be used for numerical sensitivity studies and parameter optimization. The research presented herein serves as a precursor for providing design guidance for the FFTT system as an option for tall wood-hybrid buildings in seismic regions.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Connection for the FFTT, A Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue269
Year of Publication
2013
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bhat, Pooja
Organization
University of British Columbia
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
FFTT
Quasi-Static
Monotonic Testing
Reverse Cyclic Testing
Embedment Depth
Embedment Length
Strong-column Weak-beam Failure
Cross-Section Reduction
Language
English
Research Status
Complete
Summary
This thesis fills the existing knowledge gap between detailed design and global behaviour of hybrid systems through an experimental study on an innovative timber-steel hybrid system called “FFTT”. The FFTT system relies on wall panels of mass timber such as CLT for gravity and lateral load resistance and embedded steel sections for ductility under the earthquake loads. An important step towards the practical application of the FFTT system is obtaining the proof that the connections facilitate the desired ductile failure mode. The experimental investigation was carried out at the facility of FPInnovations, Vancouver. The testing program consisted of quasi-static monotonic and reverse cyclic tests on the timber-steel hybrid system with different configurations. The two beam profiles, wide flange I-sections and hollow rectangular sections were tested. The interaction between the steel beams and CLT panels and the effect of the embedment depth, cross-section reduction and embedment length were closely examined. The study demonstrated that when using an appropriate steel section, the desired ‘Strong Column–Weak Beam’ failure mechanism was initiated and excessive wood crushing was avoided. While wide-flange I-sections were stiffer and stronger, the hollow sections displayed better post-yield behaviour with higher energy dissipation capacity through several cycles of deformation under cyclic loads. The out-of-plane buckling at the point of yielding was the major setback of the embedment of wide-flange I-sections. This research served as a precursor for providing design guidance for the FFTT system as one option for tall wood buildings in high seismic regions.
Online Access
Free
Resource Link
Less detail

Nonlinear Dynamic Analyses of Novel Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue177
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Fairhurst, Michael
Zhang, Xiaoyue
Tannert, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Ductility
FFTT
Finite Element Model
High-Rise
Multi-Storey
Timber-Steel Hybrid
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Although the benefits of using timber in mid- and high-rise construction are undisputed, there are perceived shortcomings with respect to the ductility needed to provide seismic resistance and a corresponding lack of appropriate design guidance. Overcoming these perceived shortcomings will allow timber, and its wood product derivatives, to further expand into the multi-storey construction sector, also in the context of hybrid structures that integrate different materials. The “Finding the Forest Through the Trees” (FFTT) system is a new hybrid system for high rise structures which combines the advantages of timber and steel as building materials. This paper presents research utilizing finite element models to capture the seismic response of the FFTT system and help developing design guidance. From the results presented herein, it appears that the FFTT system can meet the design performance requirements required for seismic loading: inter-storey drifts were lower than required and local plastic deformations were within a reasonable range for life safety performance.
Online Access
Free
Resource Link
Less detail

Numerical and Experimental Investigations of Connection for Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue213
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Azim, Riasat
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
FFTT
Mid-Rise
Timber-Steel Hybrid
Quasi-Static
Monotonic Testing
Reverse Cyclic Testing
Language
English
Research Status
Complete
Summary
In recent years, hybrid systems have grown in popularity as potential solution for mid-rise construction. There is also an increased interest in using timber for such systems. The lack of established design guidance, however, has tabled the practical implementation of timber-based hybrid structures. The aim of this thesis is to address the existing knowledge gap regarding the detailed connection design of hybrid systems through combined experimental and numerical investigations on a novel timber-steel system called “FFTT”. The FFTT system relies on wall panels of mass timber such as Cross-Laminated-Timber (CLT) for gravity and lateral load resistance and embedded steel beam sections to provide ductility under seismic loading. A vital step towards practical implementation of the FFTT system is to obtain the proof that the connections facilitate the desired ‘strong column – weak beam’ failure mechanism. The numerical work applied the software ANSYS; a parametric study based on the results of previous tests was conducted to obtain a suitable connection configuration for improved structural performance. The experimental work, carried out at FPInnovations, consisted of quasi-static monotonic and reversed cyclic tests on two different connection configurations: fully and partially embedded ASTM wide flange sections in combination with 7 ply CLT panels. The combination of partial embedment length and full embedment depth, even when using the smallest wide flange section, did not facilitate the desired behavior. The connection performance was significantly improved when reducing the embedment depth (to avoid creating stress peaks on a weak cross layer) and increasing the embedment length (larger center to center distance between bearing plates). The used small size steel beam, however, is not practical for a real structure; therefore, further studies with larger beams and a modified geometry are recommended before the FFTT system can be applied in practice.
Online Access
Free
Resource Link
Less detail

Risk Minimization in RTS, with Application to FFTT Timber Construction

https://research.thinkwood.com/en/permalink/catalogue337
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Larsen, Alfred
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Costs
FFTT
Timber-Steel Hybrid
Analytical Model
Language
English
Research Status
Complete
Summary
The risk posed to a structure from an earthquake may be minimized by changing the design characteristics of the structure to determine the optimal design. A risk measure, the mean value of the cost functions in this thesis, can be determined using reliability methods to construct a loss curve. This formulation includes the effect of uncertainty in all aspects of the cost, including construction and repair given an event. This risk model also requires no prior information to determine the mean cost and does not define a discrete “failure,” instead using a continuum of possible outcomes in determining the mean of the cost functions. The optimization model allows for different search directions and step sizes in the search for the minimum cost, with steepest descent and BFGS search directions currently implemented. These analyses are performed using the Rts software, which has the capability of performing the optimization, risk, and reliability analyses on input structural models.
Online Access
Free
Resource Link
Less detail

Seismic Design of Timber Steel Hybrid High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1270
Year of Publication
2017
Topic
Seismic
Connections
Application
Hybrid Building Systems
Author
Zhang, Xiaoyue
Organization
University of British Columbia
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Application
Hybrid Building Systems
Topic
Seismic
Connections
Keywords
Timber-Steel Hybrid
FFTT
Seismic Performance
Strength
Stiffness
Ductility
Failure Mechanisms
Force Reduction Factors
High-Rise
Language
English
Research Status
Complete
Summary
Timber-steel hybrid systems utilize timber as main construction material, but also take advantage of the ductility and stiffness that steel provides. For a novel hybrid system to gain recognition, experimental data must be supported by numerical analysis to predict its structural performance. “Finding the Forest Through the Trees” (FFTT) is one proposal for a timber-steel hybrid system using mass-timber panels as shear walls and floor slabs connected with steel header beams. This thesis presents research to evaluate the seismic performance of the FFTT hybrid system using experimental methods, numerical modeling, and reliability analysis. The FFTT system was investigated on two levels: i) component design, and ii) system design. On the component level, the strength, stiffness, ductility, and failure mechanisms of the two key connections were evaluated experimentally. CLT (Cross Laminated Timber) wall to steel beam connection tests results demonstrated that appropriate connection layouts can lead to the desired failure mechanism while avoiding crushing of the mass-timber panels. For the hold-down connection, a modified HSK (Holz-Stahl-Komposit) assembly with high force and stiffness capacity together with ductile behaviour was proposed. On the system level, the seismic response of the FFTT system with different ductility values was investigated using nonlinear 2D and 3D models subjected to a number of ground motion acceleration records. The seismic reliability with various uncertainties was analysed in order to investigate the FFTT system from a performance based approach. Based on the results, an appropriate seismic force reduction factor specific to the FFTT system was proposed. Finally, a feasibility study confirmed the possibility of the practical application of this system. This thesis can serve as a precursor for developing design guidelines for tall wood-hybrid building systems in seismic regions.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Embedded Steel Beam Connection in Cross-Laminated Timber Panels for Tall-Wood Hybrid System

https://research.thinkwood.com/en/permalink/catalogue415
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Zhang, Xiaoyue
Azim, Riasat
Bhat, Pooja
Popovski, Marjan
Tannert, Thomas
Publisher
Canadian Science Publishing
Year of Publication
2017
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Keywords
Timber-Steel Hybrid
Energy Dissipation
FFTT
Quasi-Static
Monotonic Test
Reverse Cyclic Test
Failure mechanism
Beam Profiles
Embedment
Language
English
Research Status
Complete
Series
Canadian Journal of Civil Engineering
Summary
Recent developments in novel engineered mass timber products and connection systems have created the possibility to design and construct tall timber-based buildings. This research presents the experiments conducted on the steel-wood connection as main energy dissipating part of a novel steel–timber hybrid system labelled Finding the Forest Through the Trees (FFTT). The performance was investigated using quasi-static monotonic and reversed cyclic tests. The influence of different steel beam profiles (wide flange I-sections and hollow rectangular sections), and the embedment approaches (partial and full embedment) was investigated. The test results demonstrated that appropriate connection layouts can lead to the desired failure mechanism while avoiding excessive crushing of the mass timber panels. The research can serve as a precursos for developing design guidelines for the FFTT systems as an option for tall wood-hybrid building systems in seismic regions.
Copyright
Courtesy of Canadian Science Publishing
Online Access
Free
Resource Link
Less detail

Seismic Reliability Analyses of Timber-Steel-Hybrid System

https://research.thinkwood.com/en/permalink/catalogue121
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Xiaoyue
Fairhurst, Michael
Tannert, Thomas
Year of Publication
2015
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Connections
non-lineardynamic analysis
Lateral Loads
Timber-Steel Hybrid
FFTT
Language
English
Conference
International Conference on Applications of Statistics and Probability in Civil Engineering
Research Status
Complete
Notes
July 12-15, 2015, Vancouver, Canada
Summary
Reliability analyses are of great importance in performance-based seismic structural design as there are inherent uncertainties in both the actions (earthquakes) and the reactions (properties of the structural systems). In this paper, reliability analyses are performed on the “Finding the Forest Through the Trees” (FFTT) system, a novel timber-steel hybrid system. The FFTT system utilizes engineered timber products to resist gravity and lateral loads with interconnecting steel members to provide the necessary ductility for seismic demands. An improved response surface method with importance sampling is used to perform reliability-based seismic analyses. Peak inter-storey drift is selected as the main performance criterion as it is typically an indicator of overall damage to the structure. Uncertainties involving ground motions, weight (mass), stiffness and connection properties of the lateral load resisting\ system are considered in formulating the performance functions. A series of nonlinear dynamic analyses is run to generate the response database and the reliability index is evaluated using first-order reliability method (FORM) and importance sampling (IS) methods. The results show that the ductility reduction factor does not significantly influence the reliability index, while the structural weight and the hold-down stiffness play significant roles.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.