Skip header and navigation

1 records – page 1 of 1.

Mass Timber Rocking Panel Retrofit of a Four-Story Soft-Story Building with Full-Scale Shake Table Validation

https://research.thinkwood.com/en/permalink/catalogue833
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bahmani, Pouria
van de Lindt, John
Iqbal, Asif
Rammer, Douglas
Publisher
MDPI
Year of Publication
2017
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Seismic
Keywords
FEMA
Full Scale
Retrofit
Seismic
Shake Table Test
Soft-Story
US
Language
English
Research Status
Complete
Series
Buildings
Summary
Soft-story wood-frame buildings have been recognized as a disaster preparedness problem for decades. There are tens of thousands of these multi-family three- and four-story structures throughout California and other cities in the United States. The majority were constructed between 1920 and 1970, with many being prevalent in the San Francisco Bay Area in California. The NEES-Soft project was a five-university multi-industry effort that culminated in a series of full-scale soft-story wood-frame building tests to validate retrofit philosophies proposed by (1) the Federal Emergency Management Agency (FEMA) P-807 guidelines and (2) a performance-based seismic retrofit (PBSR) approach developed within the project. Four different retrofit designs were developed and validated at full-scale, each with specified performance objectives, which were typically not the same. This paper focuses on the retrofit design using cross laminated timber (CLT) rocking panels and presents the experimental results of the full-scale shake table test of a four-story 370 m2 (4000 ft2) soft-story test building with that FEMA P-807 focused retrofit in place. The building was subjected to the 1989 Loma Prieta and 1992 Cape Mendocino ground motions scaled to 5% damped spectral accelerations ranging from 0.2 to 0.9 g.
Online Access
Free
Resource Link
Less detail